
KDPV. Protótipo de laptop Tiger Lake.
Sumário breve
A maior parte das informações vazadas é destinada a desenvolvedores e fabricantes OEM / ODM, mas será do interesse de entusiastas que pesquisam BIOS e modos não documentados de processadores Intel. Eles não contêm documentação interna da Intel, crítica para o lançamento ou capaz de revelar desenvolvimentos secretos. Além disso, você não encontrará informações sobre vulnerabilidades anteriormente desconhecidas aqui.
arquivos
Os arquivos não listados aqui são apenas atualizações de notícias da Intel, binários não descritos ou não dignos de atenção.
Arquivo 576931-potter-city-576931-v1-0-schem.pdf
Diagramas, diagramas de fiação , recomendações de layout para placas-mãe com quatro soquetes para processadores no núcleo SandyBridge de 2010.

Curiosamente, apenas as faixas PCIe reatribuíveis de um processador são usadas.O
restante das páginas contém dados sobre todos os blocos indicados no diagrama. Pode ser útil para o conhecimento acadêmico, mas não funcionará transferindo para placas-mãe reais.

Por exemplo, capacitores de bloqueio para diferentes circuitos mostrando a marcação exata do componente e recomendações para colocação
Arquivo 367228-367228-rev-1-5.pdf
Documentação de fiação para uma espécie de placa de depuração / demonstração para a primeira geração de átomos.

Diagrama de blocos com explicações sobre a operação do circuito de alimentação quando ligado
Arquivo 544767-intel-ethernet-connection-i219-reference-schematic-rev1-0.pdf
Diagrama de fiação típico para um adaptador de rede gigabit i219 , 2015.

Arquivo 555388-purley-platform-power-delivery-schematic-layout-checklist-rev1-1.xlsx
Uma planilha para engenheiros ou testadores de placas de terceiros. É necessário verificar o diagrama de fiação e a topologia (especificamente a seção de alimentação) para conformidade com os requisitos recomendados. Ao final, o excel calculará os "pontos" e dará o resultado em porcentagem:

Arquivo 621487-cml-itbmt3-ta-ww14-2020.pdf
Descrição geral de como o Turbo Boost 3.0 funciona em Kaby Lake (este é o núcleo de 7ª geração de 2017). Em particular, é descrito a partir de qual processador registra o subsistema BIOS para ler os multiplicadores de aumento máximo de núcleos individuais.

Arquivo 20170823_HDCP_EB-1.0_MEDIA_Eng_release.tar.gz
Daemon e utilitário de teste para verificar a operação HDCP no Arch Linux. O arquivo contém apenas binários e leia-me.
Arquivo BVT_Package_10.0.0.1086.exe
Utilitário e documentação para verificar a conformidade do sistema com os requisitos da Intel para marcar um computador com o logotipo Intel vPro . O utilitário executa vários testes e, em seguida, um relatório pode ser enviado à Intel se todos os testes forem aprovados.
Arquivo cmls102-prq-report-rev0.pdf
Metodologia de teste de chip de abril de 2020 e taxas de falha previstas para processadores Core e Xeon. A partir deste documento, você pode descobrir o que os processadores passam antes de entrar em nossos computadores:

Teste de Mortalidade Infantil é o primeiro teste de microcircuitos após embalagem em operação em temperaturas elevadas. O nome não é o mais moralmente aceitável , mas o que esperar dos autores de mestre / escravo?
Mais detalhes sobre o procedimento de teste do microcircuito podem ser encontrados no filme, que publicarei em breve.
Arquivo prq-prq-customer-report-skl-2-2-lga-dt-rev0.pdf
Mesmo relatório para processadores Pentium e i3 de 2015.
Arquivo c-state-test-case-intel-soc-watch-bkc-626226-rev0-5.pdf
Opções de teste para modos de processador c-state e p-state (otimização em termos de consumo de energia e frequência com tensão). Instruções passo a passo sobre as configurações do BIOS e como usar um utilitário de teste especial.
Arquivo FMX.Data.Flows.Training.v1.0_2020-02-11_AVM.pdf
Uma apresentação mal elaborada sobre o tópico de transmissão em rede. É meio abreviado, então eu não sabia do que se tratava. Ano de 2020.
Arquivo glk_platform_intel®_txe_4.0.25.1324_mr.pdf
Alguma descrição (incompleta) de um conjunto de utilitários para construir e assinar firmware para o módulo Intel TXE . Por exemplo, existe uma tabela de componentes TXE com seus tamanhos e recomendações para a escolha da capacidade do chip flash para o BIOS. Ano de 2020.
Como obter o arquivo nda.pdf do depurador do sistema intel
Fornece orientação sobre como obter o Intel Processor Development Kit. Literalmente como e quais campos preencher no formulário no site. Ano de 2020.
Arquivo qts-qpp-5v1-17-1.pdf
Instrução para Quartus Pro - software para desenvolvimento para FPGA (antes da compra pela Intel era conhecido como Altera Quartus).
Arquivo SeamlessUpdate_CapsuleGeneration_UserGuide_v0.5.2.pdf
Instruções para fabricantes de hardware criarem patches para atualização de BIOS, Intel ME, microcódigo e semelhantes.
Arquivo SeamlessUpdate_CapsuleGenerationEnv_v0.5.2.zip
O conjunto de utilitários para montagem.
Arquivo simicsmodellibrary_eaglestream_rn_v0_6_00.pdf
Breves instruções para instalar e usar o utilitário de emulação do sistema. É usado no desenvolvimento de firmware BIOS para processadores ainda não lançados.
Pasta Intel ME Contém utilitários, documentação e binários para Intel ME . Absolutamente nada útil foi encontrado. Há um código-fonte para um utilitário de exemplo para flash, mas ele usa a biblioteca FWUpdateLib.lib C, que faz todo o trabalho interessante. O código em todas as funções tem uma espécie de saída das funções por goto (o rótulo End é o mesmo em todas as funções), nada mais notável.
Ver lista
static UINT32 checkUpdateType(IN const char *fileName, IN UINT32 *updateType)
{
UINT32 status;
UINT16 flashMajor = 0;
UINT16 flashMinor = 0;
UINT16 flashHotfix = 0;
UINT16 flashBuild = 0;
UINT16 fileMajor = 0;
UINT16 fileMinor = 0;
UINT16 fileHotfix = 0;
UINT16 fileBuild = 0;
INT32 comparedVersion = 0;
if (fileName == NULL || updateType == NULL)
{
status = INTERNAL_ERROR;
goto End;
}
status = FwuPartitionVersionFromFlash(FPT_PARTITION_NAME_FTPR, &flashMajor, &flashMinor, &flashHotfix, &flashBuild);
if (status != SUCCESS)
{
goto End;
}
status = FwuPartitionVersionFromFile(fileName, FPT_PARTITION_NAME_FTPR, &fileMajor, &fileMinor, &fileHotfix, &fileBuild);
if (status != SUCCESS)
{
goto End;
}
comparedVersion = versionCompare(fileMajor, fileMinor, fileHotfix, fileBuild,
flashMajor, flashMinor, flashHotfix, flashBuild);
if (comparedVersion < 0)
{
*updateType = DOWNGRADE;
}
else if (comparedVersion > 0)
{
*updateType = UPGRADE;
}
else
{
*updateType = SAME_VERSION;
}
End:
return status;
}
Pasta Intel Restricted Secret
E aqui já está algo interessante. A pasta KabylakePlatform_3_7_9 \ KabylakePlatSamplePkg contém um BIOS de exemplo para a plataforma Kaby Lake (esta é a 7ª geração de processadores Core, lançada em 2017). Não tentei recolher, mas parece que tem tudo que você precisa.

A pasta Recursos contém o código-fonte dos drivers de dispositivo. Por exemplo, para SATA, na aparência, é um código bastante funcional para pesquisar e inicializar um dispositivo no PCIe.

Listagem
/**
This routine is called right after the .Supported() is called and returns
EFI_SUCCESS. Notes: The supported protocols are checked but the Protocols
are closed.
@param[in] This A pointer points to the Binding Protocol instance
@param[in] Controller The handle of controller to be tested. Parameter
passed by the caller
@param[in] RemainingDevicePath A pointer to the device path. Should be ignored by
device driver
@retval EFI_SUCCESS The device is started
@retval Other values Something error happened
**/
EFI_STATUS
EFIAPI
SataControllerStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_IDE_CONTROLLER_INIT_PROTOCOL *IdeInit;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT8 NumberOfPort;
UINT64 CommandVal;
DEBUG ((DEBUG_INFO, "SataControllerStart() Start\n"));
///
/// Now test and open the EfiPciIoProtocol
///
Status = gBS->OpenProtocol (
Controller,
&gEfiPciIoProtocolGuid,
(VOID **) &PciIo,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
///
/// Status == 0 - A normal execution flow, SUCCESS and the program proceeds.
/// Status == ALREADY_STARTED - A non-zero Status code returned. It indicates
/// that the protocol has been opened and should be treated as a
/// normal condition and the program proceeds. The Protocol will not
/// opened 'again' by this call.
/// Status != ALREADY_STARTED - Error status, terminate program execution
///
if (EFI_ERROR (Status)) {
///
/// EFI_ALREADY_STARTED is also an error
///
return Status;
}
///
/// Get device capabilities
///
Status = PciIo->Attributes (
PciIo,
EfiPciIoAttributeOperationSupported,
0,
&CommandVal
);
ASSERT_EFI_ERROR (Status);
///
/// Enable Command Register
///
Status = PciIo->Attributes (
PciIo,
EfiPciIoAttributeOperationEnable,
CommandVal & EFI_PCI_DEVICE_ENABLE,
NULL
);
ASSERT_EFI_ERROR (Status);
///
/// Get Number of Ports
///
PciIo->Mem.Read (
PciIo,
EfiPciIoWidthUint8,
EFI_AHCI_BAR_INDEX,
(UINT64) R_AHCI_CAPABILITY,
1,
& NumberOfPort
);
NumberOfPort = (NumberOfPort & 0x1F) + 1;
IdeInit = AllocatePool (sizeof (EFI_IDE_CONTROLLER_INIT_PROTOCOL));
if (IdeInit == NULL) {
return EFI_OUT_OF_RESOURCES;
}
IdeInit->GetChannelInfo = IdeInitGetChannelInfo;
IdeInit->NotifyPhase = IdeInitNotifyPhase;
IdeInit->SubmitData = IdeInitSubmitData;
IdeInit->DisqualifyMode = IdeInitDisqualifyMode;
IdeInit->CalculateMode = IdeInitCalculateMode;
IdeInit->SetTiming = IdeInitSetTiming;
IdeInit->EnumAll = SATA_ENUMER_ALL;
IdeInit->ChannelCount = NumberOfPort;
///
/// Install IDE_CONTROLLER_INIT protocol & private data to this instance
///
Status = gBS->InstallMultipleProtocolInterfaces (
&Controller,
&gEfiIdeControllerInitProtocolGuid,
IdeInit,
NULL
);
///
/// Close protocols opened by SATA controller driver
///
gBS->CloseProtocol (
Controller,
&gEfiPciIoProtocolGuid,
This->DriverBindingHandle,
Controller
);
DEBUG ((DEBUG_INFO, "SataControllerStart() End\n"));
return Status;
}
Também na pasta Intel Restricted Secret estão as fontes:
- Códigos de inicialização do processador Kaby Lake com documentação;
- Algo chamado de pacote Client Silicon API;
- Instruções para integrar tudo isso em seu BIOS (para desenvolvedores de hardware).
Arquivo 482486-crystal-forest-gladden-stargo-schematic-design-files-rev2-1.zip
Bibliotecas Cadence para desenvolvimento para plataforma Intel de codinome Crystal Forest . Não há projetos com roteamento de placa.

Lógica

EEPROM

Componentes discretos

Conectores
Conjunto comum de bibliotecas. Provavelmente do pacote de distribuição Cadence. Os próprios arquivos são datados de 2012.
Arquivo 555146-kipsbay2-archive.zip O
mesmo para placas Intel Galileo compatíveis com Arduino . Também sem arquivos de rastreamento.
Arquivo 607872-tgl-up3-up4-pdg-schchk-rev1-2.zip
Instruções muito detalhadas para o desenvolvimento de diagramas de fiação e placas de rastreamento para os processadores Core de 11ª geração que ainda não foram lançados, codinome Tiger Lake.

Existem muitas dessas ilustrações ilustrativas com explicações
Arquivo 615188-wilson-city-schematic-walkthrough-bmc.zip
Apresentação de vídeo com explicações para o diagrama de um chipset de codinome Wilson City. Trilha sonora por sintetizador de voz.

Ainda deste emocionante vídeo
Arquivo 615704-cml-s-udimm-3200-cmp-h-rvp-tdk-rev0p7.zip Diagramas de fiação
e projeto de cadência com traços de uma placa típica para processadores Comet Lake S com memória UDIMM.

Lindo

conversor de nível de 10 camadas para o arquivo HDMI
618525-tigerlake-up3-tsn-aic.zip
Parece um diagrama de fiação e uma descrição de uma placa de teste com periféricos para um processador Tiger Lake não lançado.

Placa PCIe com dois controladores Ethernet e PHY para eles

Explicações das alterações nesta revisão
Arquivo 618730-ehl-mcl-hierarchical-schematic-lp4x-0-7.zip
Biblioteca de componentes Cadence para processadores Elkhart Lake ainda não lançados (linha Intel Atom). Nenhum arquivo de projeto, mas diagrama de fiação completo para todos os periféricos e fonte de alimentação. Você já pode estimar quais portas estarão na placa.

Arquivo adk_source.2.0.11.09.standalone.snowridge_transportip.tar.gz Códigos-
fonte e instruções para o utilitário para emular o subsistema de rede de processadores Snowfish ainda não lançados... Pelo que entendi, ele se conecta ao emulador de processador Snowfish e permite que você teste os recursos de rede.
Arquivo aml_cfl_s_kbl_skl-vbios_9.0.1062.zip
Algum script para um utilitário de edição VBIOS para desenvolvedores OEM. A estrutura do arquivo de firmware VBIOS é descrita em forma de texto.
Arquivo apl-i_sic_1.1.1_v227_51_d20190502.zip
Fontes e documentação do código de inicialização do processador Apollo Lake .
File core 10x00k 10x00kf v 1.0.5.zip
Contém um instalador para um utilitário com um nome muito promissor:

não tenho esse processador, então não pude verificá-lo.
Arquivo Elkhartlake_silicon_and_platformsamplecode_v1.0.0.zip
As fontes dos códigos de inicialização agora são para Elkhart Lake, com uma parte das fontes para o BIOS e o Silício do Cliente. Eu suspeito que você pode usar o BIOS de amostra Kaby Lake para construir o BIOS para esses processadores.
Arquivo do kit Intel®pch chipset_init - tglpchlp_z0v5_a0v11.zip
Patch do BIOS em formato binário e instruções para o utilitário para instalar este patch no firmware. O patch em si corrige alguns erros na inicialização do chipset para processadores Tiger Lake.
Intel®powerandthermaldesignstudio_ext_2.1.1.zip Utilitário criptográfico
Intel Power and Thermal Design Studio.

KBL SST FDK training session 2.1.zip files - KBL SST FDK training session 4.2.zip
Gravação de tutoriais em vídeo sobre o desenvolvimento de firmware ou drivers em algum tipo de utilitário gráfico. A voz de um hindu com uma pronúncia ruim é ouvida fora da tela.
Arquivo main_pld_adr_engineering_release_ww19.zip Códigos
Verilog para o já mencionado chipset Wilson City. Aparentemente para teste em FPGAs antes da fabricação em silício.
Lista muito longa
// (C) 2020 Intel Corporation. All rights reserved.
// Your use of Intel Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files from any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Intel Program License Subscription
// Agreement, Intel FPGA IP License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Intel and sold by
// Intel or its authorized distributors. Please refer to the applicable
// agreement for further details.
`timescale 1ns/1ns
`define dedicated_debug_logic
module Wilson_City_Main (
// Input CLK
input iClk_2M,
input iClk_50M,
output o1mSCE,
//GSX Interface with BMC
input SGPIO_BMC_CLK,
input SGPIO_BMC_DOUT,
output SGPIO_BMC_DIN,
input SGPIO_BMC_LD_N,
//I2C Support
inout SMB_PLD_SDA, // SMB_PCH_PMBUS2_STBY_LVC3_SDA
input SMB_PLD_SCL, // SMB_PCH_PMBUS2_STBY_LVC3_SCL
output onSDAOE,
//LED and 7-Seg Control Logic
output [7:0] LED_CONTROL,
output FM_CPU1_DIMM_CH1_4_FAULT_LED_SEL,
output FM_CPU1_DIMM_CH5_8_FAULT_LED_SEL,
output FM_CPU2_DIMM_CH1_4_FAULT_LED_SEL,
output FM_CPU2_DIMM_CH5_8_FAULT_LED_SEL,
output FM_FAN_FAULT_LED_SEL_N,
output FM_POST_7SEG1_SEL_N,
output FM_POST_7SEG2_SEL_N,
output FM_POSTLED_SEL,
//CATERR DLY
output FM_CPU_CATERR_DLY_LVT3_N,
input FM_CPU_CATERR_PLD_LVT3_N, //% No Input FF
//ADR
input FM_ADR_COMPLETE, //% Input FF
output FM_ADR_COMPLETE_DLY,
output FM_ADR_SMI_GPIO_N,
inout FM_ADR_TRIGGER_N,
input FM_PLD_PCH_DATA, //% Input FF
input FM_PS_PWROK_DLY_SEL, //% Input FF
input FM_DIS_PS_PWROK_DLY, //% Input FF
//ESPI Support
output FM_PCH_ESPI_MUX_SEL,
//System THROTTLE
input FM_PMBUS_ALERT_B_EN, //% Input FF
input FM_THROTTLE_N, //% Input FF
input IRQ_SML1_PMBUS_PLD_ALERT_N, //% Input FF
output FM_SYS_THROTTLE_LVC3_PLD,
// Termtrip dly
input FM_CPU1_THERMTRIP_LVT3_PLD_N, //% Input FF
input FM_CPU2_THERMTRIP_LVT3_PLD_N, //% Input FF
input FM_MEM_THERM_EVENT_CPU1_LVT3_N, //% Input FF
input FM_MEM_THERM_EVENT_CPU2_LVT3_N, //% Input FF
output FM_THERMTRIP_DLY,
//MEMHOT
input IRQ_PVDDQ_ABCD_CPU1_VRHOT_LVC3_N,//% Input FF
input IRQ_PVDDQ_EFGH_CPU1_VRHOT_LVC3_N,//% Input FF
input IRQ_PVDDQ_ABCD_CPU2_VRHOT_LVC3_N,//% Input FF
input IRQ_PVDDQ_EFGH_CPU2_VRHOT_LVC3_N,//% Input FF
output FM_CPU1_MEMHOT_IN,
output FM_CPU2_MEMHOT_IN,
//MEMTRIP
input FM_CPU1_MEMTRIP_N, //% Input FF
input FM_CPU2_MEMTRIP_N, //% Input FF
//PROCHOT
input FM_PVCCIN_CPU1_PWR_IN_ALERT_N, //% Input FF
input FM_PVCCIN_CPU2_PWR_IN_ALERT_N, //% Input FF
input IRQ_PVCCIN_CPU1_VRHOT_LVC3_N, //% Input FF
input IRQ_PVCCIN_CPU2_VRHOT_LVC3_N, //% Input FF
output FM_CPU1_PROCHOT_LVC3_N,
output FM_CPU2_PROCHOT_LVC3_N,
//PERST & RST
input FM_RST_PERST_BIT0, //% No-Input FF
input FM_RST_PERST_BIT1, //% No-Input FF
input FM_RST_PERST_BIT2, //% No-Input FF
output RST_PCIE_PERST0_N,
output RST_PCIE_PERST1_N,
output RST_PCIE_PERST2_N,
output RST_CPU1_LVC3_N,
output RST_CPU2_LVC3_N,
output RST_PLTRST_B_N,//RST_PLTRST_PLD_B_N
input RST_PLTRST_N, //RST_PLTRST_PLD_N //% Input FF
//FIVR
input FM_CPU1_FIVR_FAULT_LVT3, //FM_CPU1_FIVR_FAULT_LVT3_PLD //% Input FF
input FM_CPU2_FIVR_FAULT_LVT3, //FM_CPU2_FIVR_FAULT_LVT3_PLD //% Input FF
//CPU Misc
input FM_CPU1_PKGID0, //% No-Input FF
input FM_CPU1_PKGID1, //% No-Input FF
input FM_CPU1_PKGID2, //% No-Input FF
input FM_CPU1_PROC_ID0, //% No-Input FF
input FM_CPU1_PROC_ID1, //% No-Input FF
input FM_CPU1_INTR_PRSNT, //% No-Input FF
input FM_CPU1_SKTOCC_LVT3_N, //FM_CPU1_SKTOCC_LVT3_PLD_N //% No-Input FF
input FM_CPU2_PKGID0, //% No-Input FF
input FM_CPU2_PKGID1, //% No-Input FF
input FM_CPU2_PKGID2, //% No-Input FF
input FM_CPU2_PROC_ID0, //% No-Input FF
input FM_CPU2_PROC_ID1, //% No-Input FF
input FM_CPU2_INTR_PRSNT, //% No-Input FF
input FM_CPU2_SKTOCC_LVT3_N, //FM_CPU2_SKTOCC_LVT3_PLD_N //% No-Input FF
//BMC
input FM_BMC_PWRBTN_OUT_N, //% Input FF
input FM_BMC_ONCTL_N, //FM_BMC_ONCTL_N_PLD //% Input FF
output RST_SRST_BMC_PLD_N, //RST_SRST_BMC_PLD_R_N
output FM_P2V5_BMC_EN, //FM_P2V5_BMC_EN_R
input PWRGD_P1V1_BMC_AUX, //% Input FF
//PCH
output RST_RSMRST_N, // RST_RSMRST_PLD_R_N
output PWRGD_PCH_PWROK, // PWRGD_PCH_PWROK_R
output PWRGD_SYS_PWROK, // PWRGD_SYS_PWROK_R
input FM_SLP_SUS_RSM_RST_N, //% Input FF
input FM_SLPS3_N, // FM_SLPS3_PLD_N //% Input FF
input FM_SLPS4_N, // FM_SLPS4_PLD_N //% Input FF
input FM_PCH_PRSNT_N, //% No-Input FF
output FM_PCH_P1V8_AUX_EN, // FM_PCH_P1V8_AUX_EN_R
input PWRGD_P1V05_PCH_AUX, //% Input FF
input PWRGD_P1V8_PCH_AUX, // PWRGD_P1V8_PCH_AUX_PLD //% Input FF
output FM_PFR_MUX_OE_CTL_PLD, //% PFR Mux Sel
input RST_DEDI_BUSY_PLD_N, //% Dediprog RST
//PSU Ctl
output FM_PS_EN, // FM_PS_EN_PLD_R
input PWRGD_PS_PWROK, // PWRGD_PS_PWROK_PLD_R //% Input FF
//Clock Logic
output FM_PLD_CLKS_OE_N,// FM_PLD_CLKS_OE_R_N
output FM_CPU_BCLK5_OE_R_N,
//Base Logic
input PWRGD_P3V3_AUX, //PWRGD_P3V3_AUX_PLD_R //% Input FF
//Main VR & Logic
input PWRGD_P3V3, //% Input FF
output FM_P5V_EN,
output FM_AUX_SW_EN,
//Mem
input PWRGD_CPU1_PVDDQ_ABCD, //% Input FF
input PWRGD_CPU1_PVDDQ_EFGH, //% Input FF
input PWRGD_CPU2_PVDDQ_ABCD, //% Input FF
input PWRGD_CPU2_PVDDQ_EFGH, //% Input FF
output FM_PVPP_CPU1_EN,
output FM_PVPP_CPU2_EN,
//CPU
output PWRGD_CPU1_LVC3,
output PWRGD_CPU2_LVC3,
input PWRGD_CPUPWRGD, //PWRGD_CPUPWRGD_PLD_R //% Input FF
output PWRGD_DRAMPWRGD_CPU,
output FM_P1V1_EN, // Used to turn on PCIE re-timmer vr
output FM_P1V8_PCIE_CPU1_EN,
output FM_P1V8_PCIE_CPU2_EN,
output FM_PVCCANA_CPU1_EN,
output FM_PVCCANA_CPU2_EN,
output FM_PVCCIN_CPU1_EN,
output FM_PVCCIN_CPU2_EN,
output FM_PVCCIO_CPU1_EN,
output FM_PVCCIO_CPU2_EN,
output FM_PVCCSA_CPU1_EN,
output FM_PVCCSA_CPU2_EN,
input PWRGD_BIAS_P1V1, //% Input FF
input PWRGD_P1V8_PCIE_CPU1, //% Input FF
input PWRGD_P1V8_PCIE_CPU2, //% Input FF
input PWRGD_PVCCIN_CPU1, //% Input FF
input PWRGD_PVCCIN_CPU2, //% Input FF
input PWRGD_PVCCIO_CPU1, //% Input FF
input PWRGD_PVCCIO_CPU2, //% Input FF
input PWRGD_PVCCSA_CPU1, //% Input FF
input PWRGD_PVCCSA_CPU2, //% Input FF
input PWRGD_VCCANA_PCIE_CPU1, //% Input FF
input PWRGD_VCCANA_PCIE_CPU2, //% Input FF
//DBP
input DBP_POWER_BTN_N, //% Input FF
input DBP_SYSPWROK, //DBP_SYSPWROK_PLD //% Input FF
//Debug
input FM_FORCE_PWRON_LVC3,
output FM_PLD_HEARTBEAT_LVC3,
// Front Panel
output FP_LED_FAN_FAULT_PWRSTBY_PLD_N, // Emeral ridge support
output FP_BMC_PWR_BTN_CO_N, // need add support OD
//Debug pins I/O
output SGPIO_DEBUG_PLD_CLK,
input SGPIO_DEBUG_PLD_DIN,
output SGPIO_DEBUG_PLD_DOUT,
output SGPIO_DEBUG_PLD_LD_N,
input SMB_DEBUG_PLD_SCL,
input SMB_DEBUG_PLD_SDA,
output oSMB_DEBUG_PLD_SDA_OE,
input FM_PLD_REV_N,
input SPI_BMC_BOOT_R_CS1_N,
output SPI_PFR_BOOT_CS1_N
);
//////////////////////////////////////////////////////////////////////////////////
// Parameters
//////////////////////////////////////////////////////////////////////////////////
parameter LOW =1'b0;
parameter HIGH=1'b1;
parameter FPGA_MAJOR_REV = 8'd00;
parameter FPGA_MINOR_REV = 8'd06;
parameter FPGA_DEBUG_MINIMUM_MAJOR_REV = 8'd00;
parameter FPGA_DEBUG_MINIMUM_MINOR_REV = 8'd01;
//////////////////////////////////////////////////////////////////////////////////
// Internal Signals
//////////////////////////////////////////////////////////////////////////////////
wire wCLK_20mSCE, wCLK_250mS, wCLK1SCE;
wire w1uSCE;
wire w5uSCE;
wire w10uSCE;
wire w500uSCE;
wire w1mSCE;
wire w250mSCE;
wire w20mSCE;
wire w1SCE;
wire wvRstPCIePERst_n [2:0];
wire wRstPchPerstN,wRstCPU0PerstN,wRstCPU1PerstN;
wire wPsuPwrEn,wPsuPwrFlt,wPsuPwrgd,wPwrgd_Ps_Pwrok_Dly;
wire wRst_n, wMemPwrEn;
wire wBmcPwrgd,wBmcPwrFlt;
wire wPchPwrgd,wPchPwrFlt;
wire wMemPwrgd,wMemPwrFlt;
wire wCpuPwrEn,wCpuPwrgd,wCpuPwrFlt;
wire wFault;
wire wTimeout;
wire [2:0] wDbgMemSt_CPU1;
wire [2:0] wDbgMemSt_CPU2;
wire [3:0] wDbgCpuSt_CPU1;
wire [3:0] wDbgCpuSt_CPU2;
wire [3:0] wDbgMstSt;
wire [3:0] wDbgMstSt7Seg;
wire [3:0] wFaultStage;
wire [7:0] wFaultState;
wire [254:0] wMonitorFaultState;
wire wGoOutFltSt;
wire FM_THROTTLE_N_FF;
wire IRQ_SML1_PMBUS_PLD_ALERT_N_FF;
wire FM_CPU1_THERMTRIP_LVT3_PLD_N_FF;
wire FM_CPU2_THERMTRIP_LVT3_PLD_N_FF;
wire FM_MEM_THERM_EVENT_CPU1_LVT3_N_FF;
wire FM_MEM_THERM_EVENT_CPU2_LVT3_N_FF;
wire IRQ_PVDDQ_ABCD_CPU1_VRHOT_LVC3_N_FF;
wire IRQ_PVDDQ_EFGH_CPU1_VRHOT_LVC3_N_FF;
wire IRQ_PVDDQ_ABCD_CPU2_VRHOT_LVC3_N_FF;
wire IRQ_PVDDQ_EFGH_CPU2_VRHOT_LVC3_N_FF;
wire FM_CPU1_MEMTRIP_N_FF;
wire FM_CPU2_MEMTRIP_N_FF;
wire FM_PVCCIN_CPU1_PWR_IN_ALERT_N_FF;
wire FM_PVCCIN_CPU2_PWR_IN_ALERT_N_FF;
wire IRQ_PVCCIN_CPU1_VRHOT_LVC3_N_FF;
wire IRQ_PVCCIN_CPU2_VRHOT_LVC3_N_FF;
wire FM_BMC_PWRBTN_OUT_N_FF;
wire FM_BMC_ONCTL_N_FF;
wire FM_SLP_SUS_RSM_RST_N_FF;
wire DBP_POWER_BTN_N_FF;
wire RST_PLTRST_N_FF;
wire FM_SLPS3_N_FF;
wire FM_SLPS4_N_FF;
wire PWRGD_P1V1_BMC_AUX_FF;
wire PWRGD_P1V8_PCH_AUX_FF;
wire PWRGD_P1V05_PCH_AUX_FF;
wire PWRGD_PS_PWROK_FF;
wire PWRGD_P3V3_AUX_FF;
wire PWRGD_P3V3_FF;
wire PWRGD_CPU1_PVDDQ_ABCD_FF;
wire PWRGD_CPU1_PVDDQ_EFGH_FF;
wire PWRGD_CPU2_PVDDQ_ABCD_FF;
wire PWRGD_CPU2_PVDDQ_EFGH_FF;
wire PWRGD_CPUPWRGD_FF;
wire PWRGD_BIAS_P1V1_FF;
wire PWRGD_P1V8_PCIE_CPU1_FF;
wire PWRGD_P1V8_PCIE_CPU2_FF;
wire PWRGD_PVCCIN_CPU1_FF;
wire PWRGD_PVCCIN_CPU2_FF;
wire PWRGD_PVCCIO_CPU1_FF;
wire PWRGD_PVCCIO_CPU2_FF;
wire PWRGD_PVCCSA_CPU1_FF;
wire PWRGD_PVCCSA_CPU2_FF;
wire PWRGD_VCCANA_PCIE_CPU1_FF;
wire PWRGD_VCCANA_PCIE_CPU2_FF;
wire FM_ADR_COMPLETE_FF;
wire FM_PLD_PCH_DATA_FF;
wire FM_PS_PWROK_DLY_SEL_FF;
wire FM_DIS_PS_PWROK_DLY_FF;
wire FM_PMBUS_ALERT_B_EN_FF;
wire FM_CPU1_FIVR_FAULT_LVT3_FF;
wire FM_CPU2_FIVR_FAULT_LVT3_FF;
wire DBP_SYSPWROK_FF;
wire wCPUPwrGd_Dly;
wire [7:0] wvPOSTCodeLEDs;
wire [7:0] wvFanFaultLEDs;
wire [15:0] wvP1DIMMLEDs;
wire [15:0] wvP2DIMMLEDs;
wire [15:0] wvP3DIMMLEDs;
wire [15:0] wvP4DIMMLEDs;
wire wvMCPSilicon;
wire wSocketRemoved;
wire wValidForcePowerOn;
wire wPWRGD_CPU_LVC3;
wire wPchPwrFltP1V05;
wire wPchPwrFltP1V8;
wire wSysOk;
wire wCPUMismatch;
wire wPWRGD_PS_PWROK_DLY;
wire wPWRGD_PS_PWROK_DLY_ADR;
wire wMainVRPwrEn;
wire wMainPwrFlt;
wire wP3v3PwrFlt;
wire wMainVRPwrgd;
wire wFM_AUX_SW_EN;
wire wFM_P5V_EN;
wire wMemPwrFltVDDQ_CPU1_ABCD;
wire wMemPwrFltVDDQ_CPU1_EFHG;
wire wMemPwrgd_CPU1;
wire wMemPwrFlt_CPU1;
wire wMemPwrFltVDDQ_CPU2_ABCD;
wire wMemPwrFltVDDQ_CPU2_EFHG;
wire wMemPwrgd_CPU2;
wire wMemPwrFlt_CPU2;
wire wCpuPwrgd_CPU1;
wire wCpuPwrFlt_CPU1;
wire wPWRGD_PVCCIO_CPU1;
wire wCpuPwrFltVCCIO_CPU1;
wire wCpuPwrFltP1V8_PCIE_CPU1;
wire wCpuPwrFltVCCANA_CPU1;
wire wCpuPwrFltVCCIN_CPU1;
wire wCpuPwrFltVCCSA_CPU1;
wire wCpuPwrgd_CPU2;
wire wCpuPwrFlt_CPU2;
wire wFM_PVCCIO_CPU2_EN;
wire wCpuPwrFltVCCIO_CPU2;
wire wCpuPwrFltP1V8_PCIE_CPU2;
wire wCpuPwrFltVCCANA_CPU2;
wire wCpuPwrFltVCCIN_CPU2;
wire wCpuPwrFltVCCSA_CPU2;
wire FM_BMC_ONCTL_N_LATCH;
wire wPwrEn;
wire wFM_CPU1_THERMTRIP_N;
wire wFM_CPU2_THERMTRIP_N;
wire [127:0] wInputLEDMux;
wire [7:0] wvPOSTCodeLEDMux;
wire wFM_CPU1_SKTOCC_LVT3_N;
wire wFM_CPU2_SKTOCC_LVT3_N;
wire wRSMRST_Delay_Dedi, wRSMRST_N;
wire [6:0] wByteSeg1_RevMajor;
wire [6:0] wByteSeg2_RevMinor;
wire [7:0] FPGA_REV_Major_DebugPLD;
wire [7:0] FPGA_REV_Minor_DebugPLD;
wire FM_PLD_REV_N_FF;
wire wDebugPLD_Valid;
wire wICX; //This indicates PROC ID is the ICX one and 1.8 and 2.0 vrs are not enabled
/////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////// //
// Continuous assignments //
////////////////////////////////////////////////////////////////////////////////// //
// Signal by ByPass for Force Power on, will turn on if the silicon is not populated
assign wFM_CPU1_SKTOCC_LVT3_N = wValidForcePowerOn ? LOW : FM_CPU1_SKTOCC_LVT3_N;
assign wFM_CPU2_SKTOCC_LVT3_N = wValidForcePowerOn ? LOW : FM_CPU2_SKTOCC_LVT3_N;
assign wValidForcePowerOn = FM_FORCE_PWRON_LVC3 && FM_PCH_PRSNT_N && (FM_CPU1_SKTOCC_LVT3_N || wSysOk) && (FM_CPU2_SKTOCC_LVT3_N || wSysOk); //this is only valid if silicon is not populated or STP is present (PROC_ID and PKG_ID are 1's)
assign FM_PLD_HEARTBEAT_LVC3 = RST_PLTRST_N_FF ? 1'b0 : (wDbgMstSt == 4'd0) ? wCLK_20mSCE : wCLK_250mS; // This will indicate if a fault coundtion is detected
GlitchFilter2 GlitchFilter2_inst
(
.iClk(iClk_2M),//% Clock Input
.iRst(wRst_n),//% Asynchronous Reset Input
.iSignal(PWRGD_CPUPWRGD && PWRGD_PCH_PWROK),//% Input Signals
.oFilteredSignals(wPWRGD_CPU_LVC3)//%Glitchless Signal
);
assign PWRGD_CPU1_LVC3 = (!wFM_CPU1_SKTOCC_LVT3_N) ? wPWRGD_CPU_LVC3 : LOW;
assign PWRGD_CPU2_LVC3 = (!wFM_CPU2_SKTOCC_LVT3_N) ? wPWRGD_CPU_LVC3 : LOW;
//% This logic is for enable VCCIO of CPU2 in case the SKTOCC for CPU2 is empty, both VCCIO VR need be ON.
assign FM_PVCCIO_CPU2_EN = (!wFM_CPU2_SKTOCC_LVT3_N) ? wFM_PVCCIO_CPU2_EN : FM_PVCCIO_CPU1_EN ; // VCCIO need be always ON to avoid SI issues.
assign wPWRGD_PVCCIO_CPU1= (wFM_CPU2_SKTOCC_LVT3_N) ? PWRGD_PVCCIO_CPU1_FF : (PWRGD_PVCCIO_CPU1_FF && PWRGD_PVCCIO_CPU2_FF) ; // VCCIO need be always ON to avoid SI issues.
assign RST_PLTRST_B_N = RST_PLTRST_N_FF;
assign RST_CPU1_LVC3_N = (!wFM_CPU1_SKTOCC_LVT3_N) ? RST_PLTRST_N_FF : LOW;
assign RST_CPU2_LVC3_N = (!wFM_CPU2_SKTOCC_LVT3_N) ? RST_PLTRST_N_FF : LOW;
assign FP_LED_FAN_FAULT_PWRSTBY_PLD_N = (wvFanFaultLEDs==8'h00) ? HIGH : LOW;
assign FM_P1V1_EN = (FM_CPU1_INTR_PRSNT && !wValidForcePowerOn) ? FM_PVCCIO_CPU1_EN : FM_P1V8_PCIE_CPU1_EN;
assign wMemPwrgd = (!wFM_CPU2_SKTOCC_LVT3_N) ? (wMemPwrgd_CPU1 && wMemPwrgd_CPU2) : (wMemPwrgd_CPU1);
assign wCpuPwrgd = (!wFM_CPU2_SKTOCC_LVT3_N) ? (wCpuPwrgd_CPU1 && wCpuPwrgd_CPU2) : (wCpuPwrgd_CPU1);
assign wMemPwrFlt = (!wFM_CPU2_SKTOCC_LVT3_N) ? (wMemPwrFlt_CPU1 || wMemPwrFlt_CPU2) : (wMemPwrFlt_CPU1);
assign wCpuPwrFlt = (!wFM_CPU2_SKTOCC_LVT3_N) ? (wCpuPwrFlt_CPU1 || wCpuPwrFlt_CPU2) : (wCpuPwrFlt_CPU1);
assign wRSMRST_N = RST_RSMRST_N;
assign FM_PFR_MUX_OE_CTL_PLD = ( !wRSMRST_Delay_Dedi ) ? LOW : RST_DEDI_BUSY_PLD_N;//Should be 0 until 500us after RSMRST is asserted. After this, follow RST_DEDI signal
assign SPI_PFR_BOOT_CS1_N = SPI_BMC_BOOT_R_CS1_N; //PLD does not run security checks at its own.
assign wByteSeg1_RevMajor = !wCLK1SCE ? FPGA_MAJOR_REV[6:0] : FPGA_REV_Major_DebugPLD[6:0];
assign wByteSeg2_RevMinor = !wCLK1SCE ? FPGA_MINOR_REV[6:0] : FPGA_REV_Minor_DebugPLD[6:0];
assign o1mSCE = w1mSCE;
assign wDebugPLD_Valid = ( (FPGA_REV_Major_DebugPLD <= FPGA_DEBUG_MINIMUM_MAJOR_REV[6:0]) && (FPGA_REV_Minor_DebugPLD <= FPGA_DEBUG_MINIMUM_MINOR_REV[6:0]))? HIGH : LOW;
//////////////////////////////////////////////////////////////////////////////////
// Global Reset
//////////////////////////////////////////////////////////////////////////////////
reset mReset (
.PWRGD_P3V3_AUX(PWRGD_P3V3_AUX),
.iClk_2M(iClk_2M),
.oRst_n(wRst_n)
);
//////////////////////////////////////////////////////////////////////////////////
// Clock generation and CE
//////////////////////////////////////////////////////////////////////////////////
//% Clock divider three - Generates the following synchronous clock enables: 10uS, 50uS, 500uS, 1mS, 20mS and 250mS
ClkDivTree mClkDivTree
(
.iClk ( iClk_2M ),
.iRst ( ~wRst_n ),
.o1uSCE ( w1uSCE ),
.o5uSCE ( w5uSCE ),
.o10uSCE ( w10uSCE ),
.o500uSCE ( w500uSCE ),
.o1mSCE ( w1mSCE ),
.o250mSCE ( w250mSCE ),
.o20mSCE ( w20mSCE ),
.o1SCE ( w1SCE )
);
Toggle mToggle250mSCE // module to Toggle
(
.iRst (~wRst_n), //%Reset Input
.iClk (iClk_2M), //% Clock Input
.iCE (w250mSCE), //% Clock Enable
.oTSignal(wCLK_250mS) //% Output Signal Toggle
);
Toggle mTogglew20mSCE // module to Toggle
(
.iRst (~wRst_n), //%Reset Input
.iClk (iClk_2M), //% Clock Input
.iCE (w20mSCE), //% Clock Enable
.oTSignal(wCLK_20mSCE) //% Output Signal Toggle
);
Toggle mTogglew1SCE // module to Toggle
(
.iRst (~wRst_n), //%Reset Input
.iClk (iClk_2M), //% Clock Input
.iCE (w1SCE), //% Clock Enable
.oTSignal(wCLK1SCE) //% Output Signal Toggle
);
//////////////////////////////////////////////////////////////////////////////////
//Inputs Synchronizer
//////////////////////////////////////////////////////////////////////////////////
//% Active Low
InputsSyncWithDefault #
(
.SIZE ( 5'd20 ),
.DEFAULT_OUT ( 1'b1 )
)mSlpSync0
(
.iClk ( iClk_2M ),
.iRst_n ( wRst_n ),
.ivSync ({
FM_THROTTLE_N,
IRQ_SML1_PMBUS_PLD_ALERT_N,
FM_CPU1_THERMTRIP_LVT3_PLD_N,
FM_CPU2_THERMTRIP_LVT3_PLD_N,
FM_MEM_THERM_EVENT_CPU1_LVT3_N,
FM_MEM_THERM_EVENT_CPU2_LVT3_N,
IRQ_PVDDQ_ABCD_CPU1_VRHOT_LVC3_N,
IRQ_PVDDQ_EFGH_CPU1_VRHOT_LVC3_N,
IRQ_PVDDQ_ABCD_CPU2_VRHOT_LVC3_N,
IRQ_PVDDQ_EFGH_CPU2_VRHOT_LVC3_N,
FM_CPU1_MEMTRIP_N,
FM_CPU2_MEMTRIP_N,
FM_PVCCIN_CPU1_PWR_IN_ALERT_N,
FM_PVCCIN_CPU2_PWR_IN_ALERT_N,
IRQ_PVCCIN_CPU1_VRHOT_LVC3_N,
IRQ_PVCCIN_CPU2_VRHOT_LVC3_N,
FM_BMC_PWRBTN_OUT_N,
FM_BMC_ONCTL_N,
FM_SLP_SUS_RSM_RST_N,
DBP_POWER_BTN_N
}),
.ovSync ({
FM_THROTTLE_N_FF,
IRQ_SML1_PMBUS_PLD_ALERT_N_FF,
FM_CPU1_THERMTRIP_LVT3_PLD_N_FF,
FM_CPU2_THERMTRIP_LVT3_PLD_N_FF,
FM_MEM_THERM_EVENT_CPU1_LVT3_N_FF,
FM_MEM_THERM_EVENT_CPU2_LVT3_N_FF,
IRQ_PVDDQ_ABCD_CPU1_VRHOT_LVC3_N_FF,
IRQ_PVDDQ_EFGH_CPU1_VRHOT_LVC3_N_FF,
IRQ_PVDDQ_ABCD_CPU2_VRHOT_LVC3_N_FF,
IRQ_PVDDQ_EFGH_CPU2_VRHOT_LVC3_N_FF,
FM_CPU1_MEMTRIP_N_FF,
FM_CPU2_MEMTRIP_N_FF,
FM_PVCCIN_CPU1_PWR_IN_ALERT_N_FF,
FM_PVCCIN_CPU2_PWR_IN_ALERT_N_FF,
IRQ_PVCCIN_CPU1_VRHOT_LVC3_N_FF,
IRQ_PVCCIN_CPU2_VRHOT_LVC3_N_FF,
FM_BMC_PWRBTN_OUT_N_FF,
FM_BMC_ONCTL_N_FF,
FM_SLP_SUS_RSM_RST_N_FF,
DBP_POWER_BTN_N_FF
})
);
//% Active Low
InputsSyncWithDefault #
(
.SIZE ( 3'd4 ),
.DEFAULT_OUT ( 1'b0 )
)mSlpSync1
(
.iClk ( iClk_2M ),
.iRst_n ( wRst_n ),
.ivSync ({
RST_PLTRST_N,
FM_SLPS3_N,
FM_SLPS4_N,
FM_PLD_REV_N
}),
.ovSync ({
RST_PLTRST_N_FF,
FM_SLPS3_N_FF,
FM_SLPS4_N_FF,
FM_PLD_REV_N_FF
}) );
//% Active High
InputsSyncWithDefault #
(
.SIZE ( 5'd22 ),
.DEFAULT_OUT ( 1'b0 )
)mSlpSync2
(
.iClk ( iClk_2M ),
.iRst_n ( wRst_n ),
.ivSync ({
PWRGD_P1V1_BMC_AUX,
PWRGD_P1V8_PCH_AUX,
PWRGD_P1V05_PCH_AUX,
PWRGD_PS_PWROK,
PWRGD_P3V3_AUX,
PWRGD_P3V3,
PWRGD_CPU1_PVDDQ_ABCD,
PWRGD_CPU1_PVDDQ_EFGH,
PWRGD_CPU2_PVDDQ_ABCD,
PWRGD_CPU2_PVDDQ_EFGH,
PWRGD_CPUPWRGD,
PWRGD_BIAS_P1V1,
PWRGD_P1V8_PCIE_CPU1,
PWRGD_P1V8_PCIE_CPU2,
PWRGD_PVCCIN_CPU1,
PWRGD_PVCCIN_CPU2,
PWRGD_PVCCIO_CPU1,
PWRGD_PVCCIO_CPU2,
PWRGD_PVCCSA_CPU1,
PWRGD_PVCCSA_CPU2,
PWRGD_VCCANA_PCIE_CPU1,
PWRGD_VCCANA_PCIE_CPU2
}),
.ovSync ({
PWRGD_P1V1_BMC_AUX_FF,
PWRGD_P1V8_PCH_AUX_FF,
PWRGD_P1V05_PCH_AUX_FF,
PWRGD_PS_PWROK_FF,
PWRGD_P3V3_AUX_FF,
PWRGD_P3V3_FF,
PWRGD_CPU1_PVDDQ_ABCD_FF,
PWRGD_CPU1_PVDDQ_EFGH_FF,
PWRGD_CPU2_PVDDQ_ABCD_FF,
PWRGD_CPU2_PVDDQ_EFGH_FF,
PWRGD_CPUPWRGD_FF,
PWRGD_BIAS_P1V1_FF,
PWRGD_P1V8_PCIE_CPU1_FF,
PWRGD_P1V8_PCIE_CPU2_FF,
PWRGD_PVCCIN_CPU1_FF,
PWRGD_PVCCIN_CPU2_FF,
PWRGD_PVCCIO_CPU1_FF,
PWRGD_PVCCIO_CPU2_FF,
PWRGD_PVCCSA_CPU1_FF,
PWRGD_PVCCSA_CPU2_FF,
PWRGD_VCCANA_PCIE_CPU1_FF,
PWRGD_VCCANA_PCIE_CPU2_FF
}) );
//% Active High
InputsSyncWithDefault #
(
.SIZE ( 4'd8 ),
.DEFAULT_OUT ( 1'b0 )
)mSlpSync3
(
.iClk ( iClk_2M ),
.iRst_n ( wRst_n ),
.ivSync ({
FM_ADR_COMPLETE,
FM_PLD_PCH_DATA,
FM_PS_PWROK_DLY_SEL,
FM_DIS_PS_PWROK_DLY,
FM_PMBUS_ALERT_B_EN,
FM_CPU1_FIVR_FAULT_LVT3,
FM_CPU2_FIVR_FAULT_LVT3,
DBP_SYSPWROK
}),
.ovSync ({
FM_ADR_COMPLETE_FF,
FM_PLD_PCH_DATA_FF,
FM_PS_PWROK_DLY_SEL_FF,
FM_DIS_PS_PWROK_DLY_FF,
FM_PMBUS_ALERT_B_EN_FF,
FM_CPU1_FIVR_FAULT_LVT3_FF,
FM_CPU2_FIVR_FAULT_LVT3_FF,
DBP_SYSPWROK_FF
}) );
//////////////////////////////////////////////////////////////////////////////////
// Power Secuence
//////////////////////////////////////////////////////////////////////////////////
Bmc_Seq mBmc_Seq
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1mSCE (w1mSCE),
.iGoOutFltSt (wGoOutFltSt),
//input
.PWRGD_P1V1_BMC_AUX (PWRGD_P1V1_BMC_AUX_FF),
.PWRGD_P3V3_AUX (PWRGD_P3V3_AUX_FF),
.PWRGD_PCH_P1V8 (PWRGD_P1V8_PCH_AUX_FF),
.FM_SLP_SUS_N (FM_SLP_SUS_RSM_RST_N_FF),
.RST_DEDI_BUSY_PLD_N(wRST_DEDI_BUSY_PLD_N),
//output
.FM_BMC_P2V5_AUX_EN (FM_P2V5_BMC_EN),
.RST_SRST_BMC_N (RST_SRST_BMC_PLD_N),
.oBmcPwrgd (wBmcPwrgd),
.oBmcPwrFlt (wBmcPwrFlt)
);
Pch_Seq mPch_Seq
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1mSCE (w1mSCE),
.i1uSCE (w1uSCE),
.iGoOutFltSt (wGoOutFltSt),
//input
.FM_PCH_PRSNT_N (wValidForcePowerOn ? LOW : FM_PCH_PRSNT_N),
.PWRGD_P3V3_AUX (PWRGD_P3V3_AUX_FF),
.FM_SLP_SUS_N (FM_SLP_SUS_RSM_RST_N_FF),
.RST_SRST_BMC_N (RST_SRST_BMC_PLD_N),
.PWRGD_PCH_P1V8_AUX (PWRGD_P1V8_PCH_AUX_FF),
.PWRGD_PCH_P1V05_AUX (PWRGD_P1V05_PCH_AUX_FF),
.RST_DEDI_BUSY_PLD_N (RST_DEDI_BUSY_PLD_N),
//output
.FM_PCH_P1V8_AUX_EN (FM_PCH_P1V8_AUX_EN),
.RST_RSMRST_N (RST_RSMRST_N),
.oPchPwrFltP1V05 (wPchPwrFltP1V05),
.oPchPwrFltP1V8 (wPchPwrFltP1V8),
.oPchPwrgd (wPchPwrgd),
.oPchPwrFlt (wPchPwrFlt)
);
SysCheck mSysCheck
(
.iClk (iClk_2M),
.iRst (wRst_n),
.invCPUSktOcc ({wFM_CPU2_SKTOCC_LVT3_N,wFM_CPU1_SKTOCC_LVT3_N}),
.ivProcIDCPU1 ({FM_CPU1_PROC_ID1,FM_CPU1_PROC_ID0}),
.ivProcIDCPU2 ({FM_CPU2_PROC_ID1,FM_CPU2_PROC_ID0}),
.ivPkgIDCPU1 ({FM_CPU1_PKGID2,FM_CPU1_PKGID1,FM_CPU1_PKGID0}),
.ivPkgIDCPU2 ({FM_CPU2_PKGID2,FM_CPU2_PKGID1,FM_CPU2_PKGID0}),
.ivIntr ({FM_CPU2_INTR_PRSNT,FM_CPU1_INTR_PRSNT}),
.iAuxPwrDone ( PWRGD_P1V05_PCH_AUX_FF ),
.oSysOk ( wSysOk ),
.oCPUMismatch ( wCPUMismatch ),
.oMCPSilicon ( wvMCPSilicon ),
.oSocketRemoved (wSocketRemoved),
.oICX (wICX)
);
//S5 to S0 VR logic
PSU_Seq mPSU_Seq
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1mSCE (w1mSCE),
.iGoOutFltSt (wGoOutFltSt),
//input
.iPsuPwrEn (wPsuPwrEn),
.PWRGD_PS_PWROK (wPWRGD_PS_PWROK_DLY_ADR/*PWRGD_PS_PWROK_FF*/), // need cover ADR logic
//output
.oPsuPwrFlt (wPsuPwrFlt), // output
.oPsuPwrgd (wPsuPwrgd), // output
.PWRGD_PS_PWROK_DLY (wPWRGD_PS_PWROK_DLY), // output include power up 100ms delay
.FM_PS_EN (FM_PS_EN) // output
);
MainVR_Seq mMainVR_Seq
(
.iClk (iClk_2M), // input
.iRst_n (wRst_n), // input
.iGoOutFltSt (wGoOutFltSt),
//input
.iMainVRPwrEn (wMainVRPwrEn),
.PWRGD_PS_PWROK (wPWRGD_PS_PWROK_DLY_ADR),//% PWRGD PS PWROK .
.PWRGD_P3V3 (PWRGD_P3V3_FF),//% Pwrgd from P3V3 VR
// output
.oMainPwrFlt (wMainPwrFlt), //% Fault condition.
.oP3v3PwrFlt (wP3v3PwrFlt), //% Fault P3V3 VR
.oMainVRPwrgd (wMainVRPwrgd), //% Main Vr's Enable
.FM_AUX_SW_EN (FM_AUX_SW_EN), //% 12V Only PSU Control AUX to Main SW
.FM_P5V_EN (FM_P5V_EN) //% P5V and P3V3 main Voltage enable
);
ClockLogic mClockLogic
(
.iClk (iClk_2M), // input
.iRst_n (wRst_n), // input
.iMainVRPwrgd (wMainVRPwrgd),
.iMCP_EN_CLK (wvMCPSilicon), //ICX MCP
.PWRGD_PCH_PWROK (PWRGD_PCH_PWROK),
//output
.FM_PLD_CLKS_OE_N (FM_PLD_CLKS_OE_N),
.FM_CPU_BCLK5_OE_N (FM_CPU_BCLK5_OE_R_N)
);
Mem_Seq mMem_SeqCPU1
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1mSCE (w1mSCE),
.iMemPwrEn (wMemPwrEn), // input
.iGoOutFltSt (wGoOutFltSt), // input
.iEnableTimeOut (LOW),
.PWRGD_P3V3 (PWRGD_P3V3_FF), // input
.PWRGD_VDDQ_ABCD (PWRGD_CPU1_PVDDQ_ABCD_FF), // input
.PWRGD_VDDQ_EFGH (PWRGD_CPU1_PVDDQ_EFGH_FF), // input
.FM_SLPS4_N (FM_SLPS4_N_FF || wValidForcePowerOn),//input
.FM_MEM_VPP_EN (FM_PVPP_CPU1_EN), // output
.oMemPwrFltVDDQ_ABCD (wMemPwrFltVDDQ_CPU1_ABCD),
.oMemPwrFltVDDQ_EFHG (wMemPwrFltVDDQ_CPU1_EFHG),
.oMemPwrgd (wMemPwrgd_CPU1), // output
.oMemPwrFlt (wMemPwrFlt_CPU1), // output
.oDbgMemSt (wDbgMemSt_CPU1) // output [2:0] oDbgMemSt
);
Mem_Seq mMem_SeqCPU2
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1mSCE (w1mSCE),
.iMemPwrEn (wMemPwrEn && (!wFM_CPU2_SKTOCC_LVT3_N)), // input
.iGoOutFltSt (wGoOutFltSt), // input
.iEnableTimeOut (LOW),
.PWRGD_P3V3 (PWRGD_P3V3_FF), // input
.PWRGD_VDDQ_ABCD (PWRGD_CPU2_PVDDQ_ABCD_FF), // input
.PWRGD_VDDQ_EFGH (PWRGD_CPU2_PVDDQ_EFGH_FF), // input
.FM_SLPS4_N (FM_SLPS4_N_FF || wValidForcePowerOn), //input
.FM_MEM_VPP_EN (FM_PVPP_CPU2_EN), // output
.oMemPwrFltVDDQ_ABCD (wMemPwrFltVDDQ_CPU2_ABCD),
.oMemPwrFltVDDQ_EFHG (wMemPwrFltVDDQ_CPU2_EFHG),
.oMemPwrgd (wMemPwrgd_CPU2), // output
.oMemPwrFlt (wMemPwrFlt_CPU2), // output
.oDbgMemSt (wDbgMemSt_CPU2) // output [2:0] oDbgMemSt
);
Cpu_Seq mCpu_Seq_CPU1
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1mSCE (w1mSCE),
.iCpuPwrEn (wCpuPwrEn), // input
.iGoOutFltSt (wGoOutFltSt), // input
.iEnableTimeOut (LOW),
.iICX (wICX),
.FM_INTR_PRSNT (wValidForcePowerOn ? LOW : FM_CPU1_INTR_PRSNT),// input
.PWRGD_PVCCIO (wPWRGD_PVCCIO_CPU1), // input
.PWRGD_P1V8_PCIE (PWRGD_P1V8_PCIE_CPU1_FF && PWRGD_BIAS_P1V1_FF),// input // PWRGD_BIAS_P1V1 to support PCIE retimmer VR
.PWRGD_PVCCANA (PWRGD_VCCANA_PCIE_CPU1_FF),// input
.PWRGD_PVCCIN (PWRGD_PVCCIN_CPU1_FF),// input
.PWRGD_PVCCSA (PWRGD_PVCCSA_CPU1_FF),// input
.FM_PVCCIO_EN (FM_PVCCIO_CPU1_EN), // output
.FM_P1V8_PCIE_EN (FM_P1V8_PCIE_CPU1_EN), // output
.FM_PVCCANA_EN (FM_PVCCANA_CPU1_EN), // output
.FM_PVCCIN_EN (FM_PVCCIN_CPU1_EN), // output
.FM_PVCCSA_EN (FM_PVCCSA_CPU1_EN), // output
.oCpuPwrFltVCCIO (wCpuPwrFltVCCIO_CPU1),
.oCpuPwrFltP1V8_PCIE (wCpuPwrFltP1V8_PCIE_CPU1),
.oCpuPwrFltVCCANA (wCpuPwrFltVCCANA_CPU1),
.oCpuPwrFltVCCIN (wCpuPwrFltVCCIN_CPU1),
.oCpuPwrFltVCCSA (wCpuPwrFltVCCSA_CPU1),
.oCpuPwrgd (wCpuPwrgd_CPU1), // output
.oCpuPwrFlt (wCpuPwrFlt_CPU1), // output
.oDbgCpuSt (wDbgCpuSt_CPU1) // output [3:0] oDbgCpuSt
);
Cpu_Seq mCpu_Seq_CPU2
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1mSCE (w1mSCE),
.iCpuPwrEn (wCpuPwrEn && !wFM_CPU2_SKTOCC_LVT3_N), // input
.iGoOutFltSt (wGoOutFltSt), // input
.iEnableTimeOut (LOW),
.iICX (wICX),
.FM_INTR_PRSNT (wValidForcePowerOn ? LOW : FM_CPU2_INTR_PRSNT),// input
.PWRGD_PVCCIO (PWRGD_PVCCIO_CPU2_FF), // input
.PWRGD_P1V8_PCIE (PWRGD_P1V8_PCIE_CPU2_FF),// input
.PWRGD_PVCCANA (PWRGD_VCCANA_PCIE_CPU2_FF),// input
.PWRGD_PVCCIN (PWRGD_PVCCIN_CPU2_FF),// input
.PWRGD_PVCCSA (PWRGD_PVCCSA_CPU2_FF),// input
.FM_PVCCIO_EN (wFM_PVCCIO_CPU2_EN), // output
.FM_P1V8_PCIE_EN (FM_P1V8_PCIE_CPU2_EN), // output
.FM_PVCCANA_EN (FM_PVCCANA_CPU2_EN), // output
.FM_PVCCIN_EN (FM_PVCCIN_CPU2_EN), // output
.FM_PVCCSA_EN (FM_PVCCSA_CPU2_EN), // output
.oCpuPwrFltVCCIO (wCpuPwrFltVCCIO_CPU2),
.oCpuPwrFltP1V8_PCIE (wCpuPwrFltP1V8_PCIE_CPU2),
.oCpuPwrFltVCCANA (wCpuPwrFltVCCANA_CPU2),
.oCpuPwrFltVCCIN (wCpuPwrFltVCCIN_CPU2),
.oCpuPwrFltVCCSA (wCpuPwrFltVCCSA_CPU2),
.oCpuPwrgd (wCpuPwrgd_CPU2), // output
.oCpuPwrFlt (wCpuPwrFlt_CPU2), // output
.oDbgCpuSt (wDbgCpuSt_CPU2) // output [3:0] oDbgCpuSt
);
PwrgdLogic mPwrgdLogic
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1mSCE (w1mSCE),
.iMemPwrgd (wMemPwrgd), // input
.iCpuPwrgd (wCpuPwrgd), // input
.iBmcPwrgd (wBmcPwrgd), // input
.iPchPwrgd (wPchPwrgd), // input
.FM_SLPS3_N (FM_SLPS3_N_FF || wValidForcePowerOn), // input
.FM_SLPS4_N (FM_SLPS4_N_FF || wValidForcePowerOn), // input
.PWRGD_PS_PWROK_DLY (wPWRGD_PS_PWROK_DLY_ADR),
.DBP_SYSPWROK (DBP_SYSPWROK_FF), //input
.PWRGD_CPUPWRGD (PWRGD_CPUPWRGD),
.PWRGD_DRAMPWRGD_CPU (PWRGD_DRAMPWRGD_CPU), // output
//.PWRGD_CPU_LVC3 (wPWRGD_CPU_LVC3), //output
.PWRGD_PCH_PWROK (PWRGD_PCH_PWROK), // output
.PWRGD_SYS_PWROK (PWRGD_SYS_PWROK) // output
);
ADR mADR
(
.iClk (iClk_2M), // input
.iRst_n (wRst_n), // input
.i10uSCE (w10uSCE),
.PWRGD_PS_PWROK (PWRGD_PS_PWROK_FF), // 100ms delay power-up
.FM_SLPS4_N (FM_SLPS4_N_FF),
.FM_PS_EN (FM_PS_EN),
.PWRGD_CPUPWRGD (PWRGD_CPUPWRGD_FF),
.RST_PLTRST_N (RST_PLTRST_N_FF),
.FM_PS_PWROK_DLY_SEL (FM_PS_PWROK_DLY_SEL_FF),
.FM_DIS_PS_PWROK_DLY (FM_DIS_PS_PWROK_DLY_FF),
.FM_ADR_COMPLETE (FM_ADR_COMPLETE_FF),
.FM_PLD_PCH_DATA (FM_PLD_PCH_DATA_FF), // this logic is not used since need FW support
// output
.FM_ADR_SMI_GPIO_N (FM_ADR_SMI_GPIO_N),
.FM_ADR_TRIGGER_N (FM_ADR_TRIGGER_N),
.FM_ADR_COMPLETE_DLY (FM_ADR_COMPLETE_DLY),
.PWRGD_PS_PWROK_DLY_ADR (wPWRGD_PS_PWROK_DLY_ADR)
);
Mstr_Seq Mstr_Seq_inst
(
.iClk(iClk_2M), // input
.iRst_n(wRst_n), // input
.iForcePwrOn (wValidForcePowerOn),
.iEnableGoOutFltSt (LOW), //disable RP dont need go out fault state.
.iEnableTimeOut (LOW),
.iSysOk (wSysOk), //input
.iDebugPLD_Valid(wDebugPLD_Valid),
.iMemPwrgd(wMemPwrgd), // input
.iMemPwrFlt(wMemPwrFlt), // input
.iCpuPwrgd(wCpuPwrgd), // input
.iCpuPwrFlt(wCpuPwrFlt), // input
.iBmcPwrgd(wBmcPwrgd), // input
.iBmcPwrFlt(wBmcPwrFlt), // input
.iPchPwrgd(wPchPwrgd), // input
.iPchPwrFlt(wPchPwrFlt), // input
.iPSUPwrgd(wPsuPwrgd), // input
.iPsuPwrFlt(wPsuPwrFlt), // input
.iMainVRPwrgd (wMainVRPwrgd), //input
.iMainPwrFlt (wMainPwrFlt), //input
.iSocketRemoved(wSocketRemoved),
.PWRGD_P3V3_AUX(PWRGD_P3V3_AUX_FF), // input
.PWRGD_SYS_PWROK(PWRGD_SYS_PWROK), // input
.PWRGD_CPUPWRGD(PWRGD_CPUPWRGD_FF), // input
.FM_BMC_ONCTL_N(FM_BMC_ONCTL_N_LATCH), // input
.FM_SLPS4_N( (!FM_PCH_PRSNT_N) ? FM_SLPS4_N_FF : wValidForcePowerOn), // input
.FM_SLPS3_N( (!FM_PCH_PRSNT_N) ? FM_SLPS3_N_FF : wValidForcePowerOn), // input
.RST_PLTRST_N( (!FM_PCH_PRSNT_N) ? RST_PLTRST_N_FF : wValidForcePowerOn), // input
.RST_RSMRST_PCH_N(RST_RSMRST_N), // input
.RST_SRST_BMC_N(RST_SRST_BMC_PLD_N), // input
.FM_ADR_TRIGGER_N(FM_ADR_TRIGGER_N),
.oMemPwrEn(wMemPwrEn), // output
.oCpuPwrEn(wCpuPwrEn), // output
.oPsuPwrEn(wPsuPwrEn), // output
.oMainVRPwrEn(wMainVRPwrEn), // output
.oGoOutFltSt(wGoOutFltSt), // output
.oTimeOut(wTimeout), // output
.oFault(wFault), // output
.oPwrEn (wPwrEn), // output
.oDbgMstSt7Seg(wDbgMstSt7Seg), // output [3:0] wDbgMstSt7Seg
.oDbgMstSt(wDbgMstSt) // output [3:0] oDbgMstSt
);
//////////////////////////////////////////////////////////////////////////////////
//Memhot
//////////////////////////////////////////////////////////////////////////////////
Memhot mMemhot_CPU1
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
// input
.PWRGD_SYS_PWROK (PWRGD_SYS_PWROK),
.IRQ_PVDDQ_ABCD_VRHOT_LVC3_N (IRQ_PVDDQ_ABCD_CPU1_VRHOT_LVC3_N_FF),
.IRQ_PVDDQ_EFGH_VRHOT_LVC3_N (IRQ_PVDDQ_EFGH_CPU1_VRHOT_LVC3_N_FF),
.FM_SYS_THROTTLE_LVC3 (FM_SYS_THROTTLE_LVC3_PLD),
.FM_SKTOCC_LVT3_N (wFM_CPU1_SKTOCC_LVT3_N),
// output
.FM_MEMHOT_IN (FM_CPU1_MEMHOT_IN)//% The logic is inverted using a FET
);
Memhot mMemhot_CPU2
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
// input
.PWRGD_SYS_PWROK (PWRGD_SYS_PWROK),
.IRQ_PVDDQ_ABCD_VRHOT_LVC3_N (IRQ_PVDDQ_ABCD_CPU2_VRHOT_LVC3_N_FF),
.IRQ_PVDDQ_EFGH_VRHOT_LVC3_N (IRQ_PVDDQ_EFGH_CPU2_VRHOT_LVC3_N_FF),
.FM_SYS_THROTTLE_LVC3 (FM_SYS_THROTTLE_LVC3_PLD),
.FM_SKTOCC_LVT3_N (wFM_CPU2_SKTOCC_LVT3_N),
//output
.FM_MEMHOT_IN (FM_CPU2_MEMHOT_IN)//% The logic is inverted using a FET
);
//////////////////////////////////////////////////////////////////////////////////
//Prochot
//////////////////////////////////////////////////////////////////////////////////
Prochot mProchot_CPU1
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.PWRGD_SYS_PWROK (PWRGD_SYS_PWROK),
.FM_PVCCIN_PWR_IN_ALERT_N (FM_PVCCIN_CPU1_PWR_IN_ALERT_N_FF),
.IRQ_PVCCIN_VRHOT_LVC3_N (IRQ_PVCCIN_CPU1_VRHOT_LVC3_N_FF),
.FM_SYS_THROTTLE_LVC3 (FM_SYS_THROTTLE_LVC3_PLD),
.FM_SKTOCC_LVT3_N (wFM_CPU1_SKTOCC_LVT3_N),
//output
.FM_PROCHOT_LVC3_N (FM_CPU1_PROCHOT_LVC3_N)
);
Prochot mProchot_CPU2
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.PWRGD_SYS_PWROK (PWRGD_SYS_PWROK),
.FM_PVCCIN_PWR_IN_ALERT_N (FM_PVCCIN_CPU2_PWR_IN_ALERT_N_FF),
.IRQ_PVCCIN_VRHOT_LVC3_N (IRQ_PVCCIN_CPU2_VRHOT_LVC3_N_FF),
.FM_SYS_THROTTLE_LVC3 (FM_SYS_THROTTLE_LVC3_PLD),
.FM_SKTOCC_LVT3_N (wFM_CPU2_SKTOCC_LVT3_N),
//output
.FM_PROCHOT_LVC3_N (FM_CPU2_PROCHOT_LVC3_N)
);
//////////////////////////////////////////////////////////////////////////////////
//SmaRT
//////////////////////////////////////////////////////////////////////////////////
SmaRT mSmaRT
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.IRQ_SML1_PMBUS_PLD_ALERT_N(IRQ_SML1_PMBUS_PLD_ALERT_N_FF),
.FM_PMBUS_ALERT_B_EN (FM_PMBUS_ALERT_B_EN_FF),
.FM_THROTTLE_N (FM_THROTTLE_N),
.PWRGD_SYS_PWROK (PWRGD_SYS_PWROK),
//output
.FM_SYS_THROTTLE_LVC3 (FM_SYS_THROTTLE_LVC3_PLD)//% The logic is inverted using a FET
);
//////////////////////////////////////////////////////////////////////////////////
//THERMTRIP DLY
//////////////////////////////////////////////////////////////////////////////////
//% CPUPWRGD 1.5ms delay
SignalValidationDelay#
(
.VALUE ( 1'b1 ),
.TOTAL_BITS ( 3'd4 ),
.POL ( 1'b1 )
)mThermTripDly
(
.iClk ( iClk_2M ),
.iRst ( ~wRst_n ),
.iCE ( w500uSCE ),
.ivMaxCnt ( 4'd3 ), // 500us * 3 = 1.5ms this because thermtrip condition is only valid after 1.5 ms
.iStart ( PWRGD_CPUPWRGD_FF ),
.oDone ( wCPUPwrGd_Dly )
);
thermtrip_dly mthermtrip_dly
(
.iClk_2M (iClk_2M),
.iRst_n (wRst_n),
.iCpuPwrgdDly (wCPUPwrGd_Dly),
.FM_CPU1_THERMTRIP_LVT3_N ( !wCPUPwrGd_Dly ? HIGH : FM_CPU1_THERMTRIP_LVT3_PLD_N_FF),
.FM_CPU2_THERMTRIP_LVT3_N ( !wCPUPwrGd_Dly ? HIGH : FM_CPU2_THERMTRIP_LVT3_PLD_N_FF),
.FM_MEM_THERM_EVENT_CPU1_LVT3_N ( !wMemPwrgd_CPU1 ? HIGH : FM_MEM_THERM_EVENT_CPU1_LVT3_N_FF),
.FM_MEM_THERM_EVENT_CPU2_LVT3_N ( !wMemPwrgd_CPU2 ? HIGH : FM_MEM_THERM_EVENT_CPU2_LVT3_N_FF),
.FM_CPU2_SKTOCC_LVT3_N (wFM_CPU2_SKTOCC_LVT3_N),
//output
.FM_THERMTRIP_DLY (FM_THERMTRIP_DLY)
);
//////////////////////////////////////////////////////////////////////////////////
// LED Logic control
//////////////////////////////////////////////////////////////////////////////////
led_control mled_control(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.iPostCodeLed (wvPOSTCodeLEDs),
.iDimmFltLed_CPU1_1 (wvP1DIMMLEDs[7:0]),
.iDimmFltLed_CPU1_2 (wvP1DIMMLEDs[15:8]),
.iDimmFltLed_CPU2_1 (wvP2DIMMLEDs[7:0]),
.iDimmFltLed_CPU2_2 (wvP2DIMMLEDs[15:8]),
.iFanFltLed (wvFanFaultLEDs),
.iShowDebug7seg ( (!FM_PCH_PRSNT_N ? (!RST_PLTRST_N_FF) : 1'b1) || wValidForcePowerOn), // 7 Segment Support
.iShowDebugPostCode ( (!FM_PCH_PRSNT_N ? (!RST_PLTRST_N_FF) : 1'b1) || wValidForcePowerOn),
.iDebugPostcode (wvPOSTCodeLEDMux), //change wPostcodeLedMux to wDbgMstSt7Seg for PC
.iShowMainVer_N ( wCLK1SCE ),
.iShowPLDVersion ( FM_PLD_REV_N_FF ),
.iByteSeg1_RevMajor ( wByteSeg1_RevMajor ),
.iByteSeg2_RevMinor ( wByteSeg2_RevMinor ),
.iByteSeg1 ( wFault ? {3'b000,wFaultStage} : 7'd16 ), // 7 Segment Support (Left Display, value 16 is hypen)
.iByteSeg2 ( {3'b000,wDbgMstSt7Seg} ), // 7 Segment Support (Right Display)
.oLED_CONTROL (LED_CONTROL),
.oFanFlt_Sel_N (FM_FAN_FAULT_LED_SEL_N),
.oPostCode_Led_Sel (FM_POSTLED_SEL),
.oDimmFlt_CPU1_1_Led_Sel(FM_CPU1_DIMM_CH1_4_FAULT_LED_SEL),
.oDimmFlt_CPU1_2_Led_Sel(FM_CPU1_DIMM_CH5_8_FAULT_LED_SEL),
.oDimmFlt_CPU2_1_Led_Sel(FM_CPU2_DIMM_CH1_4_FAULT_LED_SEL),
.oDimmFlt_CPU2_2_Led_Sel(FM_CPU2_DIMM_CH5_8_FAULT_LED_SEL),
.oPost7Seg1_Sel_N (FM_POST_7SEG1_SEL_N), // 7 Segment Support
.oPost7Seg2_Sel_N (FM_POST_7SEG2_SEL_N) // 7 Segment Support
);
//////////////////////////////////////////////////////////////////////////////////
// Perst Logic
//////////////////////////////////////////////////////////////////////////////////
Rst_Perst #
(
.NUM_PCIE_SIGNALS (3) //% Number of PCIE resets
) mRst_Perst
(
.iClk (iClk_2M), //System Clock - 2MHz
.iRst_n (wRst_n), //System asynchronous reset
//PERST Table control
.ivOverride_Enable({~FM_RST_PERST_BIT2,~FM_RST_PERST_BIT1,~FM_RST_PERST_BIT0}),
.ivOvrValues ({PWRGD_CPUPWRGD_FF,PWRGD_CPUPWRGD_FF,PWRGD_CPUPWRGD_FF}),
.ivDefaultValues ({RST_PLTRST_N_FF,RST_PLTRST_N_FF,RST_PLTRST_N_FF}),
//Output PCIE Resets for PERST Table
.ovRstPCIePERst_n ({RST_PCIE_PERST2_N,RST_PCIE_PERST1_N,RST_PCIE_PERST0_N})
);
//////////////////////////////////////////////////////////////////////////////////
///CATERR
//////////////////////////////////////////////////////////////////////////////////
caterr mCaterr
(
.iClk_50M (iClk_50M),
.iCpuPwrgdDly (wCPUPwrGd_Dly),
.RST_PLTRST_N (RST_PLTRST_N_FF), //in This is used as the RESET
.FM_CPU_CATERR_PLD_LVT3_N (FM_CPU_CATERR_PLD_LVT3_N), //in
.FM_CPU_CATERR_DLY_LVT3_N (FM_CPU_CATERR_DLY_LVT3_N) //out
);
//////////////////////////////////////////////////////////////////////////////////
//eSPI control
//////////////////////////////////////////////////////////////////////////////////
eSPI_Ctl meSPI_Ctl
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.i1uSCE (w1uSCE),
.RST_SRST_BMC_N (RST_SRST_BMC_PLD_N),
.iRsmRst_N (RST_RSMRST_N),
.oEspiMuxPCHSel (FM_PCH_ESPI_MUX_SEL)
);
//////////////////////////////////////////////////////////////////////////////////
//BMC Workaround
//////////////////////////////////////////////////////////////////////////////////
onctl_fix mOnctl_fix
(
.iClk_2M(iClk_2M),
.iRst_n(wRst_n),
.FM_BMC_ONCTL_N(FM_BMC_ONCTL_N_FF),
.FM_SLPS3_N(FM_SLPS3_N_FF ),
.FM_SLPS4_N(FM_SLPS4_N_FF),
//.FM_BMC_PWRBTN_OUT_N(FM_BMC_PWRBTN_OUT_N_FF),
//output
.FM_BMC_ONCTL_N_LATCH(FM_BMC_ONCTL_N_LATCH)
);
assign FP_BMC_PWR_BTN_CO_N = DBP_POWER_BTN_N;
//////////////////////////////////////////////////////////////////////////////////
// BMC Serial GPIO Logic
//////////////////////////////////////////////////////////////////////////////////
//% BMC Serial GPIO expander: Tx - {CPUs info and CPLDs version} Rx - {Port80 decoded Data}
GSX #
(
.TOTAL_INPUT_MODULES ( 4'd10 ),
.TOTAL_OUTPUT_MODULES ( 4'd10 )
)mGSX
(
.iGSXDataIn ( SGPIO_BMC_DOUT ),
.iGSXClk ( SGPIO_BMC_CLK ),
.inGSXLoad ( SGPIO_BMC_LD_N ),
.inGSXReset ( RST_PLTRST_N_FF || wValidForcePowerOn ),
.ivTxData ({
// First Byte
FM_CPU1_PROC_ID1, // SGPIO 7
FM_CPU1_PROC_ID0, // SGPIO 6
IRQ_PVDDQ_EFGH_CPU1_VRHOT_LVC3_N_FF, // SGPIO 5
IRQ_PVDDQ_ABCD_CPU1_VRHOT_LVC3_N_FF, // SGPIO 4
(wCPUPwrGd_Dly && !wFM_CPU1_SKTOCC_LVT3_N) ? ~FM_CPU1_FIVR_FAULT_LVT3_FF :HIGH, // SGPIO 3
IRQ_PVCCIN_CPU1_VRHOT_LVC3_N_FF, // SGPIO 2
wFM_CPU1_THERMTRIP_N, // SGPIO 1
wFM_CPU1_SKTOCC_LVT3_N, // SGPIO 0
// Second Byte
IRQ_PVDDQ_EFGH_CPU2_VRHOT_LVC3_N_FF, // SGPIO 15
IRQ_PVDDQ_ABCD_CPU2_VRHOT_LVC3_N_FF, // SGPIO 14
(wCPUPwrGd_Dly && !wFM_CPU2_SKTOCC_LVT3_N)? ~FM_CPU2_FIVR_FAULT_LVT3_FF :HIGH, // SGPIO 13
IRQ_PVCCIN_CPU2_VRHOT_LVC3_N_FF, // SGPIO 12
wFM_CPU2_THERMTRIP_N, // SGPIO 11
wFM_CPU2_SKTOCC_LVT3_N, // SGPIO 10
(!wFM_CPU1_SKTOCC_LVT3_N) ? FM_MEM_THERM_EVENT_CPU1_LVT3_N_FF : HIGH, // SGPIO 9
wCPUMismatch, // SGPIO 8
// Third Byte
4'b1111, // SGPIO [23:20] - CPU3 info
(!wFM_CPU2_SKTOCC_LVT3_N) ? ~FM_MEM_THERM_EVENT_CPU2_LVT3_N_FF : HIGH, // SGPIO 19
wCPUMismatch, // SGPIO 18
FM_CPU2_PROC_ID1, // SGPIO 17
FM_CPU2_PROC_ID0, // SGPIO 16
// Fourth Byte
8'b11101111, // SGPIO [31:24] - CPU3 and CPU4 info
// Fifth Byte
8'b10111111, // SGPIO [39:32] - CPU4 info
// Sixth Byte
FPGA_MINOR_REV, // SGPIO [47:40] - Revision code
// Seventh Byte
FPGA_MAJOR_REV,// SGPIO [55:48] - PLD Rev
// Eighth Byte
~wPchPwrFlt , // SGPIO63
1'b1, // SGPIO62
1'b1, // SGPIO61
~wPsuPwrFlt,// SGPIO60
~wP3v3PwrFlt,// SGPIO59
~wCpuPwrFlt_CPU1 && ~wCpuPwrFlt_CPU2, // SGPIO58
~wMemPwrFlt_CPU1 && ~wMemPwrFlt_CPU2, // SGPIO57
1'b0, // SGPIO56
// Nineth Byte
(wCPUPwrGd_Dly && !wFM_CPU2_SKTOCC_LVT3_N) ? FM_CPU2_MEMTRIP_N_FF :HIGH, // SGPIO71
FM_CPU2_PKGID2,// SGPIO70
FM_CPU2_PKGID1,// SGPIO69
FM_CPU2_PKGID0,// SGPIO68
(wCPUPwrGd_Dly && !wFM_CPU1_SKTOCC_LVT3_N) ? FM_CPU1_MEMTRIP_N_FF :HIGH, // SGPIO67
FM_CPU1_PKGID2,// SGPIO66
FM_CPU1_PKGID1,// SGPIO65
FM_CPU1_PKGID0,// SGPIO64
// Tenth Byte
8'hff /// SGPIO [79-72] PKG CPU3 and CPU4 info
}),
.oGSXDataOut ( SGPIO_BMC_DIN ),
.ovRxData ({
//Pin definition pending
wvP4DIMMLEDs[15:12], // 4 76 - 79
wvP3DIMMLEDs[15:12], // 4 72 - 75
wvP2DIMMLEDs[15:12], // 4 68 - 71
wvP1DIMMLEDs[15:12], // 4 64 - 67
wvP4DIMMLEDs[11:0], // 12 52 - 63
wvP3DIMMLEDs[11:0], // 12 40 - 51
wvP2DIMMLEDs[11:0], // 12 28 - 39
wvFanFaultLEDs, // 8 20 - 27
wvP1DIMMLEDs[11:0], // 12 8 - 19
wvPOSTCodeLEDs // 8 0-7
// First Byte
})
);
//////////////////////////////////////////////////////////////////////////////////
// THERMTRIP Latcher
//////////////////////////////////////////////////////////////////////////////////
SingleLatcher#
(
.EDGELATCH (1'b0)
) mLatchThermTrip_N_CPU1
(
.iClk (iClk_2M ),
.iRst_n (wRst_n ),
.iEnableLatch (wCPUPwrGd_Dly),//Enable latch /
.iSignalLatch (( wFM_CPU1_SKTOCC_LVT3_N | ~wCPUPwrGd_Dly ) ? 1'b1 : (FM_CPU1_THERMTRIP_LVT3_PLD_N_FF)),
.oSignalLatched (wFM_CPU1_THERMTRIP_N)
);
SingleLatcher#
(
.EDGELATCH (1'b0)
) mLatchThermTrip_N_CPU2
(
.iClk (iClk_2M ),
.iRst_n (wRst_n ),
.iEnableLatch (wCPUPwrGd_Dly),//Enable latch /
.iSignalLatch (( wFM_CPU2_SKTOCC_LVT3_N | ~wCPUPwrGd_Dly ) ? 1'b1 : (FM_CPU2_THERMTRIP_LVT3_PLD_N_FF)),
.oSignalLatched (wFM_CPU2_THERMTRIP_N)
);
//////////////////////////////////////////////////////////////////////////////////
// Led Mux Logic
//////////////////////////////////////////////////////////////////////////////////
assign wInputLEDMux = { //Signals To measure
8'hFF, //7:0 - register F
//ST_PS_OFF
LOW, //7 - register E
LOW, //6 - register E
LOW, //5 - register E
LOW, //4 - register E
LOW, //3 - register E
LOW, //2 - register E
LOW, //1 - register E
FM_SLPS3_N_FF, //0 - register E
//ST_MAIN_OFF
LOW, //7 - register D
LOW, //6 - register D
LOW, //5 - register D
LOW, //4 - register D
FM_AUX_SW_EN, //3 - register D
PWRGD_PS_PWROK_FF, //2 - register D
PWRGD_P3V3_FF, //1 - register D
FM_P5V_EN, //0 - register D
//ST_SHUTDOWN
wDbgCpuSt_CPU2, //4:7 register C
wDbgCpuSt_CPU1, //0:3 register C
//ST_DONE
LOW, //7 - register B
LOW, //6 - register B
LOW, //5 - register B
LOW, //4 - register B
LOW, //3 - register B
FM_BMC_ONCTL_N_FF, //2 - register B
FM_SLPS3_N_FF, //1 - register B
RST_PLTRST_N_FF, //0 - register B
//ST_RESET
LOW, //7 - register A
LOW, //6 - register A
LOW, //5 - register A
LOW, //4 - register A
LOW, //3 - register A
LOW, //2 - register A
LOW, //1 - register A
RST_PLTRST_N_FF, //0 - register A
//ST_CPUPWRGD
LOW, //7 - register 9
LOW, //6 - register 9
LOW, //5 - register 9
LOW, //4 - register 9
LOW, //3 - register 9
LOW, //2 - register 9
LOW, //1 - register 9
PWRGD_CPUPWRGD_FF, //0 - register 9
//ST_SYSPWROK
LOW, //7 - register 8
wMemPwrgd, //6 - register 8
wCpuPwrgd, //5 - register 8
wBmcPwrgd, //4 - register 8
wPchPwrgd, //3 - register 8
FM_SLPS3_N_FF, //2 - register 8
wPWRGD_PS_PWROK_DLY_ADR, //1 - register 8
DBP_SYSPWROK_FF, //0 - register 8
//ST_CPU
wDbgCpuSt_CPU2, //4:7 register 7
wDbgCpuSt_CPU1, //0:3 register 7
//ST_MEM
LOW, //7 - register 6
wMemPwrEn, //6 - register 6
PWRGD_CPU2_PVDDQ_EFGH_FF, //5 - register 6
PWRGD_CPU2_PVDDQ_ABCD_FF, //4 - register 6
PWRGD_CPU1_PVDDQ_EFGH_FF, //3 - register 6
PWRGD_CPU1_PVDDQ_ABCD_FF, //2 - register 6
FM_PVPP_CPU2_EN, //1 - register 6
FM_PVPP_CPU1_EN, //0 - register 6
//ST_MAIN
LOW, //7 - register 5
LOW, //6 - register 5
LOW, //5 - register 5
LOW, //4 - register 5
FM_AUX_SW_EN, //3 - register 5
PWRGD_PS_PWROK_FF, //2 - register 5
PWRGD_P3V3_FF, //1 - register 5
FM_P5V_EN, //0 - register 5
//ST_PS
LOW, //7 - register 4
LOW, //6 - register 4
LOW, //5 - register 4
LOW, //4 - register 4
LOW, //3 - register 4
LOW, //2 - register 4
PWRGD_PS_PWROK_FF, //1 - register 4
FM_PS_EN, //0 - register 4
//ST_S3
FM_PVPP_CPU2_EN, //7 - register 3
FM_PVPP_CPU1_EN, //6 - register 3
PWRGD_CPU2_PVDDQ_EFGH_FF, //5 - register 3
PWRGD_CPU2_PVDDQ_ABCD_FF, //4 - register 3
PWRGD_CPU1_PVDDQ_EFGH_FF, //3 - register 3
PWRGD_CPU1_PVDDQ_ABCD_FF, //2 - register 3
FM_SLPS4_N_FF, //1 - register 3
FM_SLPS3_N_FF, //0 - register 3
//ST_OFF
FM_CPU2_INTR_PRSNT, //7 - register 2
FM_CPU1_INTR_PRSNT, //6 - register 2
FM_CPU2_SKTOCC_LVT3_N, //5 - register 2
FM_CPU1_SKTOCC_LVT3_N, //4 - register 2
wCPUMismatch, //3 - register 2
wSysOk, //2 - register 2
FM_SLPS3_N_FF, //1 - register 2
FM_BMC_ONCTL_N_FF, //0 - register 2
//ST_STBY
LOW, //7 - register 1
FM_PCH_PRSNT_N, //6 - register 1
RST_RSMRST_N, //5 - register 1
RST_SRST_BMC_PLD_N, //4 - register 1
PWRGD_P1V1_BMC_AUX_FF, //3 - register 1
PWRGD_P1V05_PCH_AUX_FF, //2 - register 1
PWRGD_P1V8_PCH_AUX_FF, //1 - register 1
PWRGD_P3V3_AUX_FF, //0 - register 1
//ST_FAULT
wFaultState //7-0 - register 0
};
Mux128BitsTo8 mLEDMuxy8
(
.iSel (wDbgMstSt), //%Selector this will select what group you need measure.
.ivSignals (wInputLEDMux),
.ovSignals (wvPOSTCodeLEDMux)
);
//////////////////////////////////////////////////////////////////////////////////
//Fault detection
//////////////////////////////////////////////////////////////////////////////////
assign wMonitorFaultState= {
236'd0,
wCpuPwrFltVCCIO_CPU2, //18
wCpuPwrFltP1V8_PCIE_CPU2, //17
wCpuPwrFltVCCANA_CPU2, //16
wCpuPwrFltVCCIN_CPU2, //15
wCpuPwrFltVCCSA_CPU2, //14
wCpuPwrFltVCCIO_CPU1, //13
wCpuPwrFltP1V8_PCIE_CPU1, //12
wCpuPwrFltVCCANA_CPU1, //11
wCpuPwrFltVCCIN_CPU1, //10
wCpuPwrFltVCCSA_CPU1, //9
wMemPwrFltVDDQ_CPU2_EFHG, //8
wMemPwrFltVDDQ_CPU2_ABCD, //7
wMemPwrFltVDDQ_CPU1_EFHG, //6
wMemPwrFltVDDQ_CPU1_ABCD, //5
wMainPwrFlt, //4
wPsuPwrFlt, //3
wPchPwrFltP1V05, //2
wPchPwrFltP1V8, //1
wBmcPwrFlt //0
};
Fault2Code8bits mFault2Code8bits
(
.iClk (iClk_2M),
.iRst_n (wRst_n),
.iFaultstate(wMonitorFaultState),
.i250mSCE (w250mSCE),
.iMaxNumberValue(8'd18),
.oFaultStage(wFaultStage),
.oFaultState(wFaultState)
);
//////////////////////////////////////////////////////////////////////////////////
//SMBus registers module
//////////////////////////////////////////////////////////////////////////////////
wire wFilteredSDA, wFilteredSCL;
wire [9:0] wvEvAddr;
wire [31:0] wvEvData;
wire wEvWE;
wire [7:0] wSmbSelLai;
//% SDA Filter
GlitchFilter #
(
.TOTAL_STAGES( 2'd3 )
) mSDAGlitchFilter
(
.iClk ( iClk_2M ),
.iRst ( !wRst_n ),
.iCE ( 1'b1 ),
.iSignal ( SMB_PLD_SDA ),
.oGlitchlessSignal ( wFilteredSDA )
);
//
//% SCL Filter
//
GlitchFilter #
(
.TOTAL_STAGES( 2'd3 )
) mSCLGlitchFilter
(
.iClk ( iClk_2M ),
.iRst ( !wRst_n ),
.iCE ( 1'b1 ),
.iSignal ( SMB_PLD_SCL ),
.oGlitchlessSignal ( wFilteredSCL )
);
//% SMBus registers module
IICRegs#
(
.MODULE_ADDRESS ( 7'h17 )
)mIICRegs
(
.iClk ( iClk_2M ),
.iRst ( !wRst_n),
.iSCL ( wFilteredSCL ),
.iSDA ( wFilteredSDA ),
.onSDAOE ( onSDAOE ),
.ivSMBusReg00 ({
4'b0000, // <Reg|SeqState|RO|0x0000|7:4>
wDbgMstSt7Seg // <Reg|SeqState|RO|0x0000|3:0> - Current power sequencer state
}),
.ivSMBusReg01 ({
wCPUMismatch, // <Reg|SeqState|RO|0x0001|7>
FM_CPU1_INTR_PRSNT, // <Reg|SeqState|RO|0x0001|6>
FM_CPU1_SKTOCC_LVT3_N, // <Reg|SeqState|RO|0x0001|5>
FM_CPU1_PROC_ID1, // <Reg|SeqState|RO|0x0001|4>
FM_CPU1_PROC_ID0, // <Reg|SeqState|RO|0x0001|3>
FM_CPU1_PKGID2, // <Reg|SeqState|RO|0x0001|2>
FM_CPU1_PKGID1, // <Reg|SeqState|RO|0x0001|1>
FM_CPU1_PKGID0 // <Reg|SeqState|RO|0x0001|0>
}),
.ivSMBusReg02 ({
wSysOk, // <Reg|SeqState|RO|0x0002|7>
FM_CPU2_INTR_PRSNT, // <Reg|SeqState|RO|0x0002|6>
FM_CPU2_SKTOCC_LVT3_N, // <Reg|SeqState|RO|0x0002|5>
FM_CPU2_PROC_ID1, // <Reg|SeqState|RO|0x0002|4>
FM_CPU2_PROC_ID0, // <Reg|SeqState|RO|0x0002|3>
FM_CPU2_PKGID2, // <Reg|SeqState|RO|0x0002|2>
FM_CPU2_PKGID1, // <Reg|SeqState|RO|0x0002|1>
FM_CPU2_PKGID0 // <Reg|SeqState|RO|0x0002|0>
}),
.ivSMBusReg03 ({
1'b1, // <Reg|SeqState|RO|0x0003|7>
FM_BMC_ONCTL_N_LATCH, // <Reg|SeqState|RO|0x0003|6>
PWRGD_P3V3_AUX_FF, // <Reg|SeqState|RO|0x0003|5>
PWRGD_P1V1_BMC_AUX_FF, // <Reg|SeqState|RO|0x0003|4>
FM_P2V5_BMC_EN, // <Reg|SeqState|RO|0x0003|3>
RST_SRST_BMC_PLD_N, // <Reg|SeqState|RO|0x0003|2>
wBmcPwrgd, // <Reg|SeqState|RO|0x0003|1>
wBmcPwrFlt // <Reg|SeqState|RO|0x0003|0>
}),
.ivSMBusReg04 ({
wValidForcePowerOn, // <Reg|SeqState|RO|0x0004|7>
FM_PCH_PRSNT_N, // <Reg|SeqState|RO|0x0004|6>
FM_SLP_SUS_RSM_RST_N_FF, // <Reg|SeqState|RO|0x0004|5>
RST_RSMRST_N, // <Reg|SeqState|RO|0x0004|4>
FM_SLPS4_N_FF, // <Reg|SeqState|RO|0x0004|3>
FM_SLPS3_N_FF, // <Reg|SeqState|RO|0x0004|2>
PWRGD_PCH_PWROK, // <Reg|SeqState|RO|0x0004|1>
PWRGD_SYS_PWROK // <Reg|SeqState|RO|0x0004|0>
}),
.ivSMBusReg05 ({
wGoOutFltSt, // <Reg|SeqState|RO|0x0005|7>
PWRGD_P1V8_PCH_AUX_FF, // <Reg|SeqState|RO|0x0005|6>
PWRGD_P1V05_PCH_AUX_FF, // <Reg|SeqState|RO|0x0005|5>
FM_PCH_P1V8_AUX_EN, // <Reg|SeqState|RO|0x0005|4>
wPchPwrFltP1V05, // <Reg|SeqState|RO|0x0005|3>
wPchPwrFltP1V8, // <Reg|SeqState|RO|0x0005|2>
wPchPwrgd, // <Reg|SeqState|RO|0x0005|1>
wPchPwrFlt // <Reg|SeqState|RO|0x0005|0>
}),
.ivSMBusReg06 ({
wPwrEn, // <Reg|SeqState|RO|0x0006|7>
FM_PS_EN, // <Reg|SeqState|RO|0x0006|6>
PWRGD_PS_PWROK_FF, // <Reg|SeqState|RO|0x0006|5>
wPsuPwrFlt, // <Reg|SeqState|RO|0x0006|4>
FM_AUX_SW_EN, // <Reg|SeqState|RO|0x0006|3>
FM_P5V_EN, // <Reg|SeqState|RO|0x0006|2>
PWRGD_P3V3_FF, // <Reg|SeqState|RO|0x0006|1>
wMainPwrFlt // <Reg|SeqState|RO|0x0006|0>
}),
.ivSMBusReg07 ({
FM_PLD_CLKS_OE_N, // <Reg|SeqState|RO|0x0007|7>
1'b1, // <Reg|SeqState|RO|0x0007|6>
PWRGD_CPU1_PVDDQ_ABCD_FF, // <Reg|SeqState|RO|0x0007|5>
PWRGD_CPU1_PVDDQ_EFGH_FF, // <Reg|SeqState|RO|0x0007|4>
PWRGD_CPU2_PVDDQ_ABCD_FF, // <Reg|SeqState|RO|0x0007|3>
PWRGD_CPU2_PVDDQ_EFGH_FF, // <Reg|SeqState|RO|0x0007|2>
FM_PVPP_CPU1_EN, // <Reg|SeqState|RO|0x0007|1>
FM_PVPP_CPU2_EN // <Reg|SeqState|RO|0x0007|0>
}),
.ivSMBusReg08 ({
wDbgCpuSt_CPU1, // <Reg|SeqState|RO|0x0008|7:4>
wDbgCpuSt_CPU2 // <Reg|SeqState|RO|0x0008|3:0>
}),
.ivSMBusReg09 ( wvPOSTCodeLEDs ), // <Reg|BIOSPOST|RO|0x0009|7:0> - BIOS POST Codes
.ivSMBusReg0A ( FPGA_MAJOR_REV ), // <Reg|PLD Version|RO|0x000A|7:0> - CPLD1 Version
.ivSMBusReg0B ({
FM_PS_PWROK_DLY_SEL_FF, // <Reg|SeqState|RO|0x000B|7>
FM_DIS_PS_PWROK_DLY_FF, // <Reg|SeqState|RO|0x000B|6>
FM_ADR_COMPLETE_FF, // <Reg|SeqState|RO|0x000B|5>
FM_PLD_PCH_DATA, // <Reg|SeqState|RO|0x000B|4>
FM_ADR_SMI_GPIO_N, // <Reg|SeqState|RO|0x000B|3>
FM_ADR_TRIGGER_N, // <Reg|SeqState|RO|0x000B|2>
FM_ADR_COMPLETE_DLY, // <Reg|SeqState|RO|0x000B|1>
wPsuPwrFlt // <Reg|SeqState|RO|0x000B|0>
}),
.ivSMBusReg0C ({
RST_PLTRST_N_FF, // <Reg|SeqState|RO|0x000C|7>
FM_CPU1_MEMHOT_IN, // <Reg|SeqState|RO|0x000C|6>
FM_CPU2_MEMHOT_IN, // <Reg|SeqState|RO|0x000C|5>
FM_CPU1_PROCHOT_LVC3_N, // <Reg|SeqState|RO|0x000C|4>
FM_CPU2_PROCHOT_LVC3_N, // <Reg|SeqState|RO|0x000C|3>
FM_SYS_THROTTLE_LVC3_PLD, // <Reg|SeqState|RO|0x000C|2>
FM_THERMTRIP_DLY, // <Reg|SeqState|RO|0x000C|1>
wvEvAddr[9] // <Reg|EvLoggerEvents|RO|0x000C|0> - Event Logger Events Count MSB
} ),
.ivSMBusReg0D ( wvEvAddr[8:1] ), // <Reg|EvLoggerEvents|RO|0x000D|7:0> - Event Logger Events Count LSB
.ivSMBusReg0E (FPGA_MINOR_REV ), // <Reg|CPLD1Version|RO|0x000E|7:0> - PLD Version Test number
.ivSMBusReg0F ({
wFM_CPU1_THERMTRIP_N, // <Reg|SeqState|RO|0x000F|7>
wFM_CPU2_THERMTRIP_N, // <Reg|SeqState|RO|0x000F|6>
FM_CPU1_THERMTRIP_LVT3_PLD_N_FF, // <Reg|SeqState|RO|0x000F|5>
FM_CPU2_THERMTRIP_LVT3_PLD_N_FF, // <Reg|SeqState|RO|0x000F|4>
FM_MEM_THERM_EVENT_CPU1_LVT3_N_FF, // <Reg|SeqState|RO|0x000F|3>
FM_MEM_THERM_EVENT_CPU2_LVT3_N_FF, // <Reg|SeqState|RO|0x000F|2>
IRQ_SML1_PMBUS_PLD_ALERT_N_FF, // <Reg|SeqState|RO|0x000F|1>
FM_PMBUS_ALERT_B_EN_FF // <Reg|SeqState|RO|0x000F|0>
}),
.ovSMBusReg30 ({
wSmbSelLai // <Reg|StepControl|RW|0x0010|7:0>
}),
// <Reg|EventLoggerStart|RO|0x1000|7:0>
// <Reg|EventLoggerEnd|RO|0x1FFF|7:0>
.ivEventsAddress ( wvEvAddr ),
.iEventsWE ( wEvWE ),
.ivEventsInData ( wvEvData ),
.iEvRst ( !wRst_n )
);
//////////////////////////////////////////////////////////////////////////////////
// Event Logger
//////////////////////////////////////////////////////////////////////////////////
EventLogger mEventLogger
(
.iClk ( iClk_2M ),
.iRst ( !wRst_n ),
.iSample ( w1uSCE ),
.ivInputs ({
RST_PLTRST_N_FF, //31
PWRGD_CPUPWRGD_FF, //30
PWRGD_SYS_PWROK, //29
PWRGD_PCH_PWROK, //28
PWRGD_PVCCSA_CPU2_FF, //27
PWRGD_PVCCIN_CPU2_FF, //26
PWRGD_VCCANA_PCIE_CPU2_FF, //25
PWRGD_P1V8_PCIE_CPU2_FF, //24
PWRGD_PVCCIO_CPU2_FF, //23
PWRGD_PVCCSA_CPU1_FF, //22
PWRGD_PVCCIN_CPU1_FF, //21
PWRGD_VCCANA_PCIE_CPU1_FF, //20
PWRGD_BIAS_P1V1_FF, //19
PWRGD_P1V8_PCIE_CPU1_FF, //18
wPWRGD_PVCCIO_CPU1, //17
PWRGD_CPU2_PVDDQ_ABCD_FF, //16
PWRGD_CPU1_PVDDQ_ABCD_FF, //15
FM_PLD_CLKS_OE_N, //14
FM_AUX_SW_EN, //13
PWRGD_P3V3_FF, //12
PWRGD_PS_PWROK_FF, //11
FM_BMC_ONCTL_N_LATCH, //10
FM_SLPS3_N_FF, //9
FM_SLPS4_N_FF, //8
//------------------
RST_RSMRST_N, //-7
RST_SRST_BMC_PLD_N, //-6
PWRGD_P1V05_PCH_AUX_FF, //-5
PWRGD_P1V1_BMC_AUX_FF, //-4
PWRGD_P1V8_PCH_AUX_FF, //3
PWRGD_P3V3_AUX_FF, // -2
FM_SLP_SUS_RSM_RST_N_FF, // - 1
wSysOk // - 0
}),
.ovAddress ( wvEvAddr ),
.ovData ( wvEvData ),
.oWE ( wEvWE )
);
wire wRST_DEDI_BUSY_PLD_N;
SignalValidationDelay#
(
.VALUE ( 1'b1 ),
.TOTAL_BITS ( 4'd6 ),
.POL ( 1'b1 )
) mRSMRST_Delay_Dedi
(
.iClk ( iClk_2M ),
.iRst ( ~wRst_n),
.iCE ( w10uSCE ),
.ivMaxCnt ( 6'd49 ), //500us delay
.iStart ( wRSMRST_N ),
.oDone ( wRSMRST_Delay_Dedi )
);
SignalValidationDelay#
(
.VALUE ( 1'b0 ),
.TOTAL_BITS ( 3'd2 ),
.POL ( 1'b0 )
) mRST_DEDI_BUSY_PLD_N
(
.iClk ( iClk_2M ),
.iRst ( ~wRst_n),
.iCE ( w1uSCE ),
.ivMaxCnt ( 3'd2 ), //2us delay
.iStart ( RST_DEDI_BUSY_PLD_N ),
.oDone ( wRST_DEDI_BUSY_PLD_N )
);
//////////////////////////////////////////////////////////////////////////////////
// DEBUG GSX PORT - Communication for Debug (Secondary) PLD
//////////////////////////////////////////////////////////////////////////////////
wire [7:0] wGSX_From_DebugPLD;
GSX_Master #
(
.TOTAL_OUTPUT_MODULES( 2'd3 )
) mGSX_Master
(
.iClk(iClk_2M), //% 2MHz Reference Clock
.iCE(w5uSCE), //% Chip enable to generate oSClock. 10uS to generate 100KHz SClock
.iReset(wRst_n), //% Input reset.
.oSClock (SGPIO_DEBUG_PLD_CLK), //% Output clock.
.oSLoad (SGPIO_DEBUG_PLD_LD_N), //% Output Last clock of a bit stream; begin a new bit stream on the next clock.
.oSDataOut (SGPIO_DEBUG_PLD_DOUT), //% Input serial data bit stream.
.iSDataIn (SGPIO_DEBUG_PLD_DIN), //% Output serial data bit stream.
.ovDataIn( {
//Third Byte
wGSX_From_DebugPLD[7:0], //8 23:16 - Spare from Debug (0xAA)
// Second Byte
FPGA_REV_Minor_DebugPLD, // 8 15-8
// First Byte
FPGA_REV_Major_DebugPLD // 8 0-7
} ), //% Data receive vector. Master receives using DataIn. At Modular PPO baseboard, no data is pretended to be received from Global PLD
.ivDataOut( { //Debug PLD is not intended to receive data from Main PLD, however misc data is set to test
8'h80, // SGPIO [23:16] - Third byte
8'h86, // SGPIO [15:8] - Second Byte
8'hAA // SGPIO [7:0] - First Byte
} ) //% Data transmit vector. Master transmits using DataOut
);
`ifdef dedicated_debug_logic
//////////////////////////////////////////////////////////////////////////////////
//SMBus registers module - Dedicated Debug Port
//////////////////////////////////////////////////////////////////////////////////
wire wDedicatedFilteredSDA, wDedicatedFilteredSCL;
//% SDA Filter
GlitchFilter #
(
.TOTAL_STAGES( 2'd3 )
) mSDAGlitchFilter_Dedicated
(
.iClk ( iClk_2M ),
.iRst ( !wRst_n ),
.iCE ( 1'b1 ),
.iSignal ( SMB_DEBUG_PLD_SDA ),
.oGlitchlessSignal ( wDedicatedFilteredSDA )
);
//
//% SCL Filter
//
GlitchFilter #
(
.TOTAL_STAGES( 2'd3 )
) mSCLGlitchFilter_Dedicated
(
.iClk ( iClk_2M ),
.iRst ( !wRst_n ),
.iCE ( 1'b1 ),
.iSignal ( SMB_DEBUG_PLD_SCL ),
.oGlitchlessSignal ( wDedicatedFilteredSCL )
);
//% SMBus registers module
IICRegs#
(
.MODULE_ADDRESS ( 7'h17 )
)mIICRegs_Dedicated
(
.iClk ( iClk_2M ),
.iRst ( !wRst_n),
.iSCL ( wDedicatedFilteredSCL ),
.iSDA ( wDedicatedFilteredSDA ),
.onSDAOE ( oSMB_DEBUG_PLD_SDA_OE ),
.ivSMBusReg00 ({
4'b0000, // <Reg|SeqState|RO|0x0000|7:4>
wDbgMstSt7Seg // <Reg|SeqState|RO|0x0000|3:0> - Current power sequencer state
}),
.ivSMBusReg01 ({
wCPUMismatch, // <Reg|SeqState|RO|0x0001|7>
FM_CPU1_INTR_PRSNT, // <Reg|SeqState|RO|0x0001|6>
FM_CPU1_SKTOCC_LVT3_N, // <Reg|SeqState|RO|0x0001|5>
FM_CPU1_PROC_ID1, // <Reg|SeqState|RO|0x0001|4>
FM_CPU1_PROC_ID0, // <Reg|SeqState|RO|0x0001|3>
FM_CPU1_PKGID2, // <Reg|SeqState|RO|0x0001|2>
FM_CPU1_PKGID1, // <Reg|SeqState|RO|0x0001|1>
FM_CPU1_PKGID0 // <Reg|SeqState|RO|0x0001|0>
}),
.ivSMBusReg02 ({
wSysOk, // <Reg|SeqState|RO|0x0002|7>
FM_CPU2_INTR_PRSNT, // <Reg|SeqState|RO|0x0002|6>
FM_CPU2_SKTOCC_LVT3_N, // <Reg|SeqState|RO|0x0002|5>
FM_CPU2_PROC_ID1, // <Reg|SeqState|RO|0x0002|4>
FM_CPU2_PROC_ID0, // <Reg|SeqState|RO|0x0002|3>
FM_CPU2_PKGID2, // <Reg|SeqState|RO|0x0002|2>
FM_CPU2_PKGID1, // <Reg|SeqState|RO|0x0002|1>
FM_CPU2_PKGID0 // <Reg|SeqState|RO|0x0002|0>
}),
.ivSMBusReg03 ({
1'b1, // <Reg|SeqState|RO|0x0003|7>
FM_BMC_ONCTL_N_LATCH, // <Reg|SeqState|RO|0x0003|6>
PWRGD_P3V3_AUX_FF, // <Reg|SeqState|RO|0x0003|5>
PWRGD_P1V1_BMC_AUX_FF, // <Reg|SeqState|RO|0x0003|4>
FM_P2V5_BMC_EN, // <Reg|SeqState|RO|0x0003|3>
RST_SRST_BMC_PLD_N, // <Reg|SeqState|RO|0x0003|2>
wBmcPwrgd, // <Reg|SeqState|RO|0x0003|1>
wBmcPwrFlt // <Reg|SeqState|RO|0x0003|0>
}),
.ivSMBusReg04 ({
wValidForcePowerOn, // <Reg|SeqState|RO|0x0004|7>
FM_PCH_PRSNT_N, // <Reg|SeqState|RO|0x0004|6>
FM_SLP_SUS_RSM_RST_N_FF, // <Reg|SeqState|RO|0x0004|5>
RST_RSMRST_N, // <Reg|SeqState|RO|0x0004|4>
FM_SLPS4_N_FF, // <Reg|SeqState|RO|0x0004|3>
FM_SLPS3_N_FF, // <Reg|SeqState|RO|0x0004|2>
PWRGD_PCH_PWROK, // <Reg|SeqState|RO|0x0004|1>
PWRGD_SYS_PWROK // <Reg|SeqState|RO|0x0004|0>
}),
.ivSMBusReg05 ({
wGoOutFltSt, // <Reg|SeqState|RO|0x0005|7>
PWRGD_P1V8_PCH_AUX_FF, // <Reg|SeqState|RO|0x0005|6>
PWRGD_P1V05_PCH_AUX_FF, // <Reg|SeqState|RO|0x0005|5>
FM_PCH_P1V8_AUX_EN, // <Reg|SeqState|RO|0x0005|4>
wPchPwrFltP1V05, // <Reg|SeqState|RO|0x0005|3>
wPchPwrFltP1V8, // <Reg|SeqState|RO|0x0005|2>
wPchPwrgd, // <Reg|SeqState|RO|0x0005|1>
wPchPwrFlt // <Reg|SeqState|RO|0x0005|0>
}),
.ivSMBusReg06 ({
wPwrEn, // <Reg|SeqState|RO|0x0006|7>
FM_PS_EN, // <Reg|SeqState|RO|0x0006|6>
PWRGD_PS_PWROK_FF, // <Reg|SeqState|RO|0x0006|5>
wPsuPwrFlt, // <Reg|SeqState|RO|0x0006|4>
FM_AUX_SW_EN, // <Reg|SeqState|RO|0x0006|3>
FM_P5V_EN, // <Reg|SeqState|RO|0x0006|2>
PWRGD_P3V3_FF, // <Reg|SeqState|RO|0x0006|1>
wMainPwrFlt // <Reg|SeqState|RO|0x0006|0>
}),
.ivSMBusReg07 ({
FM_PLD_CLKS_OE_N, // <Reg|SeqState|RO|0x0007|7>
1'b1, // <Reg|SeqState|RO|0x0007|6>
PWRGD_CPU1_PVDDQ_ABCD_FF, // <Reg|SeqState|RO|0x0007|5>
PWRGD_CPU1_PVDDQ_EFGH_FF, // <Reg|SeqState|RO|0x0007|4>
PWRGD_CPU2_PVDDQ_ABCD_FF, // <Reg|SeqState|RO|0x0007|3>
PWRGD_CPU2_PVDDQ_EFGH_FF, // <Reg|SeqState|RO|0x0007|2>
FM_PVPP_CPU1_EN, // <Reg|SeqState|RO|0x0007|1>
FM_PVPP_CPU2_EN // <Reg|SeqState|RO|0x0007|0>
}),
.ivSMBusReg08 ({
wDbgCpuSt_CPU1, // <Reg|SeqState|RO|0x0008|7:4>
wDbgCpuSt_CPU2 // <Reg|SeqState|RO|0x0008|3:0>
}),
.ivSMBusReg09 ( wvPOSTCodeLEDs ), // <Reg|BIOSPOST|RO|0x0009|7:0> - BIOS POST Codes
.ivSMBusReg0A ( FPGA_MAJOR_REV ), // <Reg|PLD Version|RO|0x000A|7:0> - CPLD1 Version
.ivSMBusReg0B ({
FM_PS_PWROK_DLY_SEL_FF, // <Reg|SeqState|RO|0x000B|7>
FM_DIS_PS_PWROK_DLY_FF, // <Reg|SeqState|RO|0x000B|6>
FM_ADR_COMPLETE_FF, // <Reg|SeqState|RO|0x000B|5>
FM_PLD_PCH_DATA, // <Reg|SeqState|RO|0x000B|4>
FM_ADR_SMI_GPIO_N, // <Reg|SeqState|RO|0x000B|3>
FM_ADR_TRIGGER_N, // <Reg|SeqState|RO|0x000B|2>
FM_ADR_COMPLETE_DLY, // <Reg|SeqState|RO|0x000B|1>
wPsuPwrFlt // <Reg|SeqState|RO|0x000B|0>
}),
.ivSMBusReg0C ({
RST_PLTRST_N_FF, // <Reg|SeqState|RO|0x000C|7>
FM_CPU1_MEMHOT_IN, // <Reg|SeqState|RO|0x000C|6>
FM_CPU2_MEMHOT_IN, // <Reg|SeqState|RO|0x000C|5>
FM_CPU1_PROCHOT_LVC3_N, // <Reg|SeqState|RO|0x000C|4>
FM_CPU2_PROCHOT_LVC3_N, // <Reg|SeqState|RO|0x000C|3>
FM_SYS_THROTTLE_LVC3_PLD, // <Reg|SeqState|RO|0x000C|2>
FM_THERMTRIP_DLY, // <Reg|SeqState|RO|0x000C|1>
wvEvAddr[9] // <Reg|EvLoggerEvents|RO|0x000C|0> - Event Logger Events Count MSB
} ),
.ivSMBusReg0D ( wvEvAddr[8:1] ), // <Reg|EvLoggerEvents|RO|0x000D|7:0> - Event Logger Events Count LSB
.ivSMBusReg0E ( FPGA_MINOR_REV ), // <Reg|CPLD1Version|RO|0x000E|7:0> - PLD Version Test number
.ivSMBusReg0F ({
wFM_CPU1_THERMTRIP_N, // <Reg|SeqState|RO|0x000F|7>
wFM_CPU2_THERMTRIP_N, // <Reg|SeqState|RO|0x000F|6>
FM_CPU1_THERMTRIP_LVT3_PLD_N_FF, // <Reg|SeqState|RO|0x000F|5>
FM_CPU2_THERMTRIP_LVT3_PLD_N_FF, // <Reg|SeqState|RO|0x000F|4>
FM_MEM_THERM_EVENT_CPU1_LVT3_N_FF, // <Reg|SeqState|RO|0x000F|3>
FM_MEM_THERM_EVENT_CPU2_LVT3_N_FF, // <Reg|SeqState|RO|0x000F|2>
IRQ_SML1_PMBUS_PLD_ALERT_N_FF, // <Reg|SeqState|RO|0x000F|1>
FM_PMBUS_ALERT_B_EN_FF // <Reg|SeqState|RO|0x000F|0>
}),
.ivSMBusReg10 ({
FM_P1V1_EN,
FM_P1V8_PCIE_CPU1_EN,
FM_PVCCANA_CPU1_EN,
FM_PVCCIN_CPU1_EN,
FM_PVCCIO_CPU1_EN,
FM_PVCCSA_CPU1_EN,
FM_CPU1_FIVR_FAULT_LVT3,
1'b1
}),
.ivSMBusReg11 ({
PWRGD_BIAS_P1V1,
PWRGD_P1V8_PCIE_CPU1,
PWRGD_VCCANA_PCIE_CPU1,
PWRGD_PVCCIN_CPU1,
PWRGD_PVCCIO_CPU1,
PWRGD_PVCCSA_CPU1,
PWRGD_CPU1_LVC3,
1'b1
}),
.ivSMBusReg12 ({
FM_PVCCIN_CPU1_PWR_IN_ALERT_N,
IRQ_PVCCIN_CPU1_VRHOT_LVC3_N,
IRQ_PVDDQ_ABCD_CPU1_VRHOT_LVC3_N,
IRQ_PVDDQ_EFGH_CPU1_VRHOT_LVC3_N,
FM_CPU1_MEMTRIP_N,
wFM_CPU1_THERMTRIP_N,
FM_MEM_THERM_EVENT_CPU1_LVT3_N,
RST_CPU1_LVC3_N
}),
.ivSMBusReg13 ({
wCpuPwrgd_CPU1,
wCpuPwrFlt_CPU1,
wPWRGD_PVCCIO_CPU1,
wCpuPwrFltVCCIO_CPU1,
wCpuPwrFltP1V8_PCIE_CPU1,
wCpuPwrFltVCCANA_CPU1,
wCpuPwrFltVCCIN_CPU1,
wCpuPwrFltVCCSA_CPU1
}),
.ivSMBusReg14 ({
wMemPwrFltVDDQ_CPU1_ABCD,
wMemPwrFltVDDQ_CPU1_EFHG,
wMemPwrFlt_CPU1,
wMemPwrgd_CPU1,
1'b1,
1'b1,
1'b1,
1'b1
}),
.ivSMBusReg15 ({
FM_P1V8_PCIE_CPU2_EN,
FM_PVCCANA_CPU2_EN,
FM_PVCCIN_CPU2_EN,
FM_PVCCIO_CPU2_EN,
FM_PVCCSA_CPU2_EN,
FM_CPU2_FIVR_FAULT_LVT3,
1'b1,
1'b1
}),
.ivSMBusReg16 ({
PWRGD_P1V8_PCIE_CPU2,
PWRGD_VCCANA_PCIE_CPU2,
PWRGD_PVCCIN_CPU2,
PWRGD_PVCCIO_CPU2,
PWRGD_PVCCSA_CPU2,
PWRGD_CPU2_LVC3,
1'b1,
1'b1
}),
.ivSMBusReg17 ({
FM_PVCCIN_CPU2_PWR_IN_ALERT_N,
IRQ_PVCCIN_CPU2_VRHOT_LVC3_N,
IRQ_PVDDQ_ABCD_CPU2_VRHOT_LVC3_N,
IRQ_PVDDQ_EFGH_CPU2_VRHOT_LVC3_N,
FM_CPU2_MEMTRIP_N,
wFM_CPU2_THERMTRIP_N,
FM_MEM_THERM_EVENT_CPU2_LVT3_N,
RST_CPU2_LVC3_N
}),
.ivSMBusReg18 ({
wCpuPwrgd_CPU2,
wCpuPwrFlt_CPU2,
wFM_PVCCIO_CPU2_EN,
wCpuPwrFltVCCIO_CPU2,
wCpuPwrFltP1V8_PCIE_CPU2,
wCpuPwrFltVCCANA_CPU2,
wCpuPwrFltVCCIN_CPU2,
wCpuPwrFltVCCSA_CPU2
}),
.ivSMBusReg19 ({
wMemPwrFltVDDQ_CPU2_ABCD,
wMemPwrFltVDDQ_CPU2_EFHG,
wMemPwrFlt_CPU2,
wMemPwrgd_CPU2,
1'b1,
1'b1,
1'b1,
1'b1
}),
.ivSMBusReg1A ({
FM_RST_PERST_BIT0,
FM_RST_PERST_BIT1,
FM_RST_PERST_BIT2,
RST_PCIE_PERST0_N,
RST_PCIE_PERST1_N,
RST_PCIE_PERST2_N,
RST_PLTRST_B_N,
PWRGD_CPUPWRGD
}),
.ivSMBusReg1B ({
RST_PLTRST_N,
FM_CPU_CATERR_DLY_LVT3_N,
FM_CPU_CATERR_PLD_LVT3_N,
FM_PCH_ESPI_MUX_SEL,
PWRGD_DRAMPWRGD_CPU,
FM_THROTTLE_N,
DBP_POWER_BTN_N,
DBP_SYSPWROK
}),
.ivSMBusReg1C ({
FM_PFR_MUX_OE_CTL_PLD,
RST_DEDI_BUSY_PLD_N,
1'b0,
FM_CPU_BCLK5_OE_R_N,
FM_PLD_CLKS_OE_N,
FM_P5V_EN,
FM_AUX_SW_EN,
FP_LED_FAN_FAULT_PWRSTBY_PLD_N
}),
.ivSMBusReg1D ({
wPwrEn,
wPsuPwrEn,
wFM_P5V_EN,
wMainVRPwrEn,
wFM_AUX_SW_EN,
wMemPwrEn,
wCpuPwrEn,
wP3v3PwrFlt
}),
.ivSMBusReg1E ({
wPchPwrFltP1V8,
wPchPwrFltP1V05,
wPchPwrFlt,
wBmcPwrFlt,
wPsuPwrFlt,
wMainPwrFlt,
wMemPwrFlt,
wCpuPwrFlt
}),
.ivSMBusReg1F ({
wPsuPwrgd,
wPchPwrgd,
wBmcPwrgd,
wMainVRPwrgd,
wMemPwrgd,
wCpuPwrgd,
wFault,
wTimeout
}),
.ivSMBusReg20 ({
FPGA_REV_Major_DebugPLD
}),// <Reg|MiscVal|RO|0x0020|7:0>
.ivSMBusReg21 ({
FPGA_REV_Minor_DebugPLD
}),// <Reg|MiscVal|RO|0x0021|7:0>
.ivSMBusReg22 ({
7'd0,
wDebugPLD_Valid
}),// <Reg|MiscVal|RO|0x0022|7:0>
.ivSMBusReg23 ( 8'hAA ), // <Reg|MiscVal|RO|0x0023|7:0>
.ivSMBusReg24 ( 8'h24 ), // <Reg|MiscVal|RO|0x0024|7:0>
.ivSMBusReg25 ( 8'hAA ), // <Reg|MiscVal|RO|0x0025|7:0>
.ivSMBusReg26 ( 8'h26 ), // <Reg|MiscVal|RO|0x0026|7:0>
.ivSMBusReg27 ( 8'hAA ), // <Reg|MiscVal|RO|0x0027|7:0>
.ivSMBusReg28 ( 8'h28 ), // <Reg|MiscVal|RO|0x0028|7:0>
.ivSMBusReg29 ( 8'hAA ), // <Reg|MiscVal|RO|0x0029|7:0>
.ivSMBusReg2A ( 8'h2A ), // <Reg|MiscVal|RO|0x002A|7:0>
.ivSMBusReg2B ( 8'hAA ), // <Reg|MiscVal|RO|0x002B|7:0>
.ivSMBusReg2C ( 8'h2C ), // <Reg|MiscVal|RO|0x002C|7:0>
.ivSMBusReg2D ( 8'hAA ), // <Reg|MiscVal|RO|0x002D|7:0>
.ivSMBusReg2E ( 8'h2E ), // <Reg|MiscVal|RO|0x002E|7:0>
.ivSMBusReg2F ( 8'hAA ) // <Reg|MiscVal|RO|0x002F|7:0>
);
`else
assign oSMB_DEBUG_PLD_SDA_OE = HIGH;
`endif
endmodule
Arquivo PPSampleApp_intel123.zip Códigos
fonte de um utilitário desconhecido em C ++ para VS2013. A senha do arquivo é "intel123".
Arquivo R5MR_DT_Firmware_Release_ (8C2C17_8C1C12) .zip
Fontes de firmware para alguns roteadores Intel xDSL. Parte do código em ASM.
Arquivo TGL_3175_01_282_Engineering_Release.zip
Códigos fonte para BIOS, códigos init, Client Silicon e similares para processadores Tiger Lake.
Arquivo Tgl_bios_ww17_2020.zip
Várias versões de binários para compilar o BIOS Tiger Lake.
Arquivo TGL_V2527_10_IPCM_Sample_Code_V1.0.0.zip Códigos-
fonte para o driver IPCM Tiger Lake para integração em seu BIOS.
Arquivo Ucodeupdatecapsule_0x30_0x31.zip
Atualização de microcódigo para processador desconhecido. Binários para inclusão no pacote geral de atualização do BIOS. Nunca veremos as fontes do microcódigo .
O arquivo wav_fw_src_06.01.00_er7.87_20191226040022.zip
Parece o código-fonte do firmware do roteador Intel.
Arquivo WW04'20_Ext_RKL_S_VP_PPR.zip
Biblioteca de modelos para emular os processadores Rocket Lake S com uma descrição.

Arquivo WW18'20_Ext_RKL_S_VP_PPR.zip
Atualizando modelos para Rocket Lake S.
Arquivo WW11'20_Ext_TGL_H_VP_PPR.zip
Idem para Tiger Lake H.
Arquivo WW18'20_Ext_ADL_S_VP_PPR.zip
Idem para Alder Lake S.

Mais tarde, houve um pequeno acréscimo à pia.
Apollo Lake Intel® TXE 3.1.75.2351_MR (provavelmente incompleto)
arquivo .zip Instruções, utilitário e arquivo binário para construir firmware Intel TXE por OEMs.

Arquivo APS_Software.zip Um
kit de distribuição em massa para o Intel Automated Power Switch. A partir da descrição, você pode ver que ele foi projetado para testes automatizados abrangentes de estados-p (controle de tensão e frequência dependendo da carga) de sistemas móveis e de desktop. Em anexo está a documentação e as instruções para adaptar os testes de desenvolvedores OEM às suas necessidades.

Arquivo Certificates.zip
Contém os certificados para o receptor sem fio HDCP.

Não consigo imaginar cenários para seu uso indevido. Talvez alguém lhe diga nos comentários.
Tigerisland-rev1.zip
Diagramas de fiação , diagramas e lista de peças de componentes para um protótipo de laptop em Tiger Lake.

Arquivo Lakefield_Pets.zip
Distribuição e documentação do Intel Platform Enablement Test Suite. Outro aplicativo de teste automatizado Intel ME para a plataforma Lakefield .
Isso é tudo.
Inscreva-se no canal , goste, mande suas doações .