Implementação de pool de RoI no TensorFlow + Keras

Olá Habr! Apresento a sua atenção a tradução do artigo "Implementando o RoI Pooling no TensorFlow + Keras", de Jaime Sevilla.



Atualmente, estou fazendo um curso de aprendizado de máquina. No bloco de treinamento "Visão computacional", havia uma necessidade de estudar o RoI Pooling de camadas. O artigo abaixo me pareceu interessante e, portanto, decidi compartilhar a tradução com a comunidade.



Neste post, explicaremos o conceito básico e o uso geral do pool de RoI ( região de interesse ) e forneceremos uma implementação usando as camadas TensorFlow Keras.



O público-alvo deste post são pessoas familiarizadas com a teoria básica de redes neurais (convolucionais) (CNNs) e capazes de criar e executar modelos simples usando Keras .



Se você está aqui apenas para obter código, verifique aqui e não se esqueça de curtir e compartilhar o artigo!



Entendendo o pool de RoI



RoI Pooling foi proposto por Ross Girshik no artigo Fast R-CNN como parte de seu pipeline de reconhecimento de objetos.



Em um caso de uso geral para RoI Pooling , temos um objeto parecido com uma imagem e várias regiões de interesse ( RoIs ) especificadas através de caixas delimitadoras. Queremos criar incorporações (incorporações - mapeando uma entidade arbitrária (uma parte de uma figura) para um determinado vetor) de cada RoI.



Por exemplo, em uma configuração da R-CNN, temos uma imagem e um mecanismo de destaque da região candidata que cria caixas delimitadoras para partes potencialmente interessantes da imagem. Agora, queremos criar uma incorporação para cada parte sugerida da imagem.



destacando as regiões candidatas na imagem



O simples corte de cada área sugerida não funcionará porque queremos sobrepor as combinações resultantes umas sobre as outras, e as áreas sugeridas não têm necessariamente a mesma forma!



, . ?



- (pooling).



max pooling, ( ) , , .



A operação maxpool divide cada área em conjuntos do mesmo tamanho



maxpool

, – : .



. RoI ?



A operação Pool de ROI divide as partes de pool da imagem com uma grade de tamanho igual.



ROI Pooling , pooling.

, ROI Pooling.



RoI Pooling.



RoI Pooling — . , RoI, . , .

-, ( RoI Pooling ), ( ), (end-to-end) (single-pass) .



Fast R-CNN demonstra RoI Pooling por Ross Girshik



Fast R-CNN, RoI Pooling,

, R-CNN , (RoI). RoI Pooling CNN . .

-, -, RoI Pooling (visual attention).



Rede de Atenção para Detecção de Objetos Visuais, demonstrando ROI Pooling, por Hara et al.



Attentional Network , ROI Pooling, Hara ..

Attentional Network , Hara attention, ROI ROI Pooling. (t = 1), ROI Pooling (Fully Connected). Glimpse () (t = 2) , ROI Pooling. .



.



, , ROI.



:



  • (batch) . , . (batch_size, img_width, img_height, n_channels), batch_size- , img_width — , img_height — , n_channels — .
  • (batch) ROI. , - . 4 , (batch_size, n_rois, 4), batch_size — ROI, n_rois — ROI.


:



  • , ROI. (batch_size, n_rois, pooled_width, pooled_height, n_channels). batch_size- , n_rois — ROI, pooled_width — , pooled_height— , n_channels — .


Keras



Keras Layer.



tf.keras init, build call . , build , , . compute_output_shape.



, .



def __init__(self, pooled_height, pooled_width, **kwargs):
    self.pooled_height = pooled_height
    self.pooled_width = pooled_width
    super(ROIPoolingLayer, self).__init__(**kwargs)


. , . .



def compute_output_shape(self, input_shape):
    """ Returns the shape of the ROI Layer output
    """
    feature_map_shape, rois_shape = input_shape
    assert feature_map_shape[0] == rois_shape[0]
    batch_size = feature_map_shape[0]
    n_rois = rois_shape[1]
    n_channels = feature_map_shape[3]
    return (batch_size, n_rois, self.pooled_height, 
            self.pooled_width, n_channels)


compute_output_shape — , , .



(call). — , . , ROI Pooling, .



, , ROI .



.



@staticmethod
def _pool_roi(feature_map, roi, pooled_height, pooled_width):
  """ Applies ROI Pooling to a single image and a single ROI
  """# Compute the region of interest        
  feature_map_height = int(feature_map.shape[0])
  feature_map_width  = int(feature_map.shape[1])

  h_start = tf.cast(feature_map_height * roi[0], 'int32')
  w_start = tf.cast(feature_map_width  * roi[1], 'int32')
  h_end   = tf.cast(feature_map_height * roi[2], 'int32')
  w_end   = tf.cast(feature_map_width  * roi[3], 'int32')

  region = feature_map[h_start:h_end, w_start:w_end, :]
...


, .



, ROI , 0 1. , ROI 4- , (x_min, y_min, x_max, y_max ).

ROI , , , : , , ROI Pooling, , , ROI.



, TensorFlow.



...
# Divide the region into non overlapping areas
region_height = h_end - h_start
region_width  = w_end - w_start
h_step = tf.cast(region_height / pooled_height, 'int32')
w_step = tf.cast(region_width  / pooled_width , 'int32')

areas = [[(
           i*h_step, 
           j*w_step, 
           (i+1)*h_step if i+1 < pooled_height else region_height, 
           (j+1)*w_step if j+1 < pooled_width else region_width
          ) 
          for j in range(pooled_width)] 
         for i in range(pooled_height)]
...


ROI, .



2D , , , .



, , , , ROI (region_height // pooled_height, region_width // pooled_width), ROI, .



2D , .



...
# Take the maximum of each area and stack the result
def pool_area(x): 
  return tf.math.reduce_max(region[x[0]:x[2],x[1]:x[3],:], axis=[0,1])

pooled_features = tf.stack([[pool_area(x) for x in row] for row in areas])
return pooled_features


. pool_area, , , , , .

pool_area , , list comprehension .



(pooled_height, pooled_width, n_channels), RoI .



— RoI . tf.map_fn (n_rois, pooled_height, pooled_width, n_channels).



@staticmethod
def _pool_rois(feature_map, rois, pooled_height, pooled_width):
  """ Applies ROI pooling for a single image and varios ROIs
  """
  def curried_pool_roi(roi): 
    return ROIPoolingLayer._pool_roi(feature_map, roi, 
                                     pooled_height, pooled_width)

  pooled_areas = tf.map_fn(curried_pool_roi, rois, dtype=tf.float32)
  return pooled_areas


, . tf.map_fn (, x), , .



def call(self, x):
  """ Maps the input tensor of the ROI layer to its output
  """
  def curried_pool_rois(x): 
    return ROIPoolingLayer._pool_rois(x[0], x[1], 
                                      self.pooled_height, 
                                      self.pooled_width)

  pooled_areas = tf.map_fn(curried_pool_rois, x, dtype=tf.float32)
  return pooled_areas


, dtype tf.map_fn , . , , , Tensorflow.



:



import tensorflow as tf
from tensorflow.keras.layers import Layer

class ROIPoolingLayer(Layer):
    """ Implements Region Of Interest Max Pooling 
        for channel-first images and relative bounding box coordinates

        # Constructor parameters
            pooled_height, pooled_width (int) -- 
              specify height and width of layer outputs

        Shape of inputs
            [(batch_size, pooled_height, pooled_width, n_channels),
             (batch_size, num_rois, 4)]

        Shape of output
            (batch_size, num_rois, pooled_height, pooled_width, n_channels)

    """
    def __init__(self, pooled_height, pooled_width, **kwargs):
        self.pooled_height = pooled_height
        self.pooled_width = pooled_width

        super(ROIPoolingLayer, self).__init__(**kwargs)

    def compute_output_shape(self, input_shape):
        """ Returns the shape of the ROI Layer output
        """
        feature_map_shape, rois_shape = input_shape
        assert feature_map_shape[0] == rois_shape[0]
        batch_size = feature_map_shape[0]
        n_rois = rois_shape[1]
        n_channels = feature_map_shape[3]
        return (batch_size, n_rois, self.pooled_height, 
                self.pooled_width, n_channels)

    def call(self, x):
        """ Maps the input tensor of the ROI layer to its output

            # Parameters
                x[0] -- Convolutional feature map tensor,
                        shape (batch_size, pooled_height, pooled_width, n_channels)
                x[1] -- Tensor of region of interests from candidate bounding boxes,
                        shape (batch_size, num_rois, 4)
                        Each region of interest is defined by four relative 
                        coordinates (x_min, y_min, x_max, y_max) between 0 and 1
            # Output
                pooled_areas -- Tensor with the pooled region of interest, shape
                    (batch_size, num_rois, pooled_height, pooled_width, n_channels)
        """
        def curried_pool_rois(x): 
          return ROIPoolingLayer._pool_rois(x[0], x[1], 
                                            self.pooled_height, 
                                            self.pooled_width)

        pooled_areas = tf.map_fn(curried_pool_rois, x, dtype=tf.float32)

        return pooled_areas

    @staticmethod
    def _pool_rois(feature_map, rois, pooled_height, pooled_width):
        """ Applies ROI pooling for a single image and varios ROIs
        """
        def curried_pool_roi(roi): 
          return ROIPoolingLayer._pool_roi(feature_map, roi, 
                                           pooled_height, pooled_width)

        pooled_areas = tf.map_fn(curried_pool_roi, rois, dtype=tf.float32)
        return pooled_areas

    @staticmethod
    def _pool_roi(feature_map, roi, pooled_height, pooled_width):
        """ Applies ROI pooling to a single image and a single region of interest
        """

        # Compute the region of interest        
        feature_map_height = int(feature_map.shape[0])
        feature_map_width  = int(feature_map.shape[1])

        h_start = tf.cast(feature_map_height * roi[0], 'int32')
        w_start = tf.cast(feature_map_width  * roi[1], 'int32')
        h_end   = tf.cast(feature_map_height * roi[2], 'int32')
        w_end   = tf.cast(feature_map_width  * roi[3], 'int32')

        region = feature_map[h_start:h_end, w_start:w_end, :]

        # Divide the region into non overlapping areas
        region_height = h_end - h_start
        region_width  = w_end - w_start
        h_step = tf.cast( region_height / pooled_height, 'int32')
        w_step = tf.cast( region_width  / pooled_width , 'int32')

        areas = [[(
                    i*h_step, 
                    j*w_step, 
                    (i+1)*h_step if i+1 < pooled_height else region_height, 
                    (j+1)*w_step if j+1 < pooled_width else region_width
                   ) 
                   for j in range(pooled_width)] 
                  for i in range(pooled_height)]

        # take the maximum of each area and stack the result
        def pool_area(x): 
          return tf.math.reduce_max(region[x[0]:x[2], x[1]:x[3], :], axis=[0,1])

        pooled_features = tf.stack([[pool_area(x) for x in row] for row in areas])
        return pooled_features


! , 1- 100x200, 2 RoI, 7x3. , 4 . — 1, 50 (-1, -3).



import numpy as np# Define parameters
batch_size = 1
img_height = 200
img_width = 100
n_channels = 1
n_rois = 2
pooled_height = 3
pooled_width = 7# Create feature map input
feature_maps_shape = (batch_size, img_height, img_width, n_channels)
feature_maps_tf = tf.placeholder(tf.float32, shape=feature_maps_shape)
feature_maps_np = np.ones(feature_maps_tf.shape, dtype='float32')
feature_maps_np[0, img_height-1, img_width-3, 0] = 50
print(f"feature_maps_np.shape = {feature_maps_np.shape}")# Create batch size
roiss_tf = tf.placeholder(tf.float32, shape=(batch_size, n_rois, 4))
roiss_np = np.asarray([[[0.5,0.2,0.7,0.4], [0.0,0.0,1.0,1.0]]], dtype='float32')
print(f"roiss_np.shape = {roiss_np.shape}")# Create layer
roi_layer = ROIPoolingLayer(pooled_height, pooled_width)
pooled_features = roi_layer([feature_maps_tf, roiss_tf])
print(f"output shape of layer call = {pooled_features.shape}")# Run tensorflow session
with tf.Session() as session:
    result = session.run(pooled_features, 
                         feed_dict={feature_maps_tf:feature_maps_np,  
                                    roiss_tf:roiss_np})

print(f"result.shape = {result.shape}")
print(f"first  roi embedding=\n{result[0,0,:,:,0]}")
print(f"second roi embedding=\n{result[0,1,:,:,0]}")


, TensorFlow, .



:



feature_maps_np.shape = (1, 200, 100, 1)
roiss_np.shape = (1, 2, 4)
output shape of layer call = (1, 2, 3, 7, 1)
result.shape = (1, 2, 3, 7, 1)
first  roi embedding=
[[1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1.]]
second roi embedding=
[[ 1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1. 50.]]


, . — 1, , 50.



, !





, !



, ROI Pooling (attention). , , Keras , ROI Pooling .



, , , !



Ari Brill, Tjark Miener Bryan Kim .








All Articles