Aprendizado de máquina baseado em treliça

Este é o terceiro artigo de uma série de artigos (links para o primeiro e o segundo artigo ) descrevendo um sistema de aprendizado de máquina baseado na teoria da rede, intitulado "Sistema VKF". Utiliza uma abordagem estrutural (teórica da estrutura) para a apresentação de exemplos de treinamento e seus fragmentos, considerados as causas da propriedade alvo. O sistema calcula esses fragmentos como semelhanças entre alguns subconjuntos dos exemplos de treinamento. Existe uma teoria algébrica de tais representações chamada Análise Formal de Conceitos (AFP).



No entanto, o sistema descrito utiliza algoritmos probabilísticos para eliminar as desvantagens da abordagem ilimitada. Detalhes abaixo ...



Aplicações AFP



Introdução



Começaremos demonstrando nossa abordagem aplicada a um problema escolar.



, .



, : ( ) .



, , ( ).



— .



, :



" " (A),

" " (B),

" " (C),

" " (D),

" " (E).

.



A B C D E
1 1 0 1 1 1
1 0 1 0 0 1
0 1 0 1 1 0
0 0 1 0 1 0
? 1 0 1 0 1


( ) ( ) .



{,},{E},



( , ), — .



{E} {A,C,E}, , .. . -. ( ), , .



:



{,},{D},



, .

.., .., .. (.). . 2: , M.: URSS, 2020, 238 . ISBN 978-5-382-01977-2



, " -", {D} {A,C,D,E} ().



1.



- . , " - ". . ( ) , .



(= ) — (G,M,I), G M — , IG×M. G M , . , gIm g,mI, , g m.



AG BM



A={mM|gA(gIm)},B={gG|mB(gIm)};



A — , A, B — , B. ():2G2M ():2M2G (= ) (G,M,I).



(= ) (G,M,I) A,B, AG, BM, A=B B=A. A A,B (=) , B (=). (G,M,I) L(G,M,I).



, L(G,M,I)



A1,B1A2,B2=(A1A2),B1B2,A1,B1A2,B2=A1A2,(B1B2).



: A,BL(G,M,I), gG mM



CbO(A,B,g)=(A{g}),B{g},CbO(A,B,m)=A{m},(B{m}).



CbO, "--" (Close-by-One (CbO)), L(G,M,I).



CbO



(G,M,I) — , A1,B1,A2,B2L(G,M,I), gG mM.



A1,B1A2,B2CbO(A1,B1,g)CbO(A2,B2,g),A1,B1A2,B2CbO(A1,B1,g)CbO(A2,B2,g).



2.



, :



  1. ( ) .



  2. (NP-).



  3. .



  4. '' , .





1 , ( ):



MG m1 m2 mn
g1 0 1 1
g2 1 0 1
gn 1 1 0


, G{gi1,,gik},{mi1,,mik} . 2n .



, , n=32, 128 , 2n 237 , .. 16 !



2 . .. (- ).



3 4 . , "" -, . — , , "" -



1eaaea[1eca],



( ... ) p=a/n0, - m=cn, n.



, 1eaaea , , a >1.



.



3.



- . ( - ).



, , , .



(, , , ). .



, , (-).



input:  (G,M,I),   CbO( , )
result:   <A,B>
X=G U M; 
A = M'; B = M;  
C = G; D = G';
while (A!=C || B!= D) {
           x  X;
        <A,B> = CbO(<A,B>,x);
        <C,D> = CbO(<C,D>,x);
}


. , ( )



(n+k)22kn=2+(nk)22kn2



, n — , k — .



, .. .



4. -



, , .



(G,M,I). O - ( -).



T .



, A,BL(G,M,I). - VKF-hypothesis A,B, - oO, B{o}.





input:  N -  
result:   S   
while (i<N) {
           <A,B>  (G,M,I);
        hasObstacle = false;
        for (o in O) {
            if (B   {o}') hasObstacle = true;
        }
        if (hasObstacle == false) {
                S = S U {<A,B>};
                i = i+1;
        }
}


B{o} B A,B ( ) - o.



, -.



(, "--") , - .



.



input:  T       
input:   S   -
for (x in T) {
        target(x) = false;
        for (<A,B> in S) {
            if (B is a part of {x}') target(x) = true;
        }
}


, - .



x ε-, - A,B B{x} ε.



N , .



n=|M|, ε>0 1>δ>0 S -



N2(n+1)2log2δε



>1δ , ε- $x$ - A,BS, .. B{x}.



. .. . .. .





, . "-" . .. .



.



. , , , .



.




All Articles