Fetch é uma biblioteca Scala para organizar o acesso a dados de sistemas de arquivos, bancos de dados, serviços da web e quaisquer outras fontes, cujos dados podem ser obtidos por um identificador único. A biblioteca foi escrita em um estilo funcional e é baseada no Efeito Gatos e Gatos. Projetado para composição e otimização de consultas a diferentes fontes de dados. Ele permite que você:
- solicitar dados de várias fontes em paralelo;
- solicitar dados de uma fonte em paralelo;
- combinar solicitações de uma fonte em uma solicitação;
- desduplique consultas em cada uma das situações listadas;
- resultados da consulta de cache.
Para fazer isso, a biblioteca fornece ferramentas que permitem a você escrever código de negócios limpo sem construções de baixo nível para implementar as otimizações listadas.
Os exemplos usam a versão mais recente do Fetch no momento em que este livro foi escrito - 1.3.0.
Fonte de dados em busca
Para implementar o acesso a qualquer fonte por meio do Fetch, você precisa implementar:
- descrição da fonte de dados (característica
Data[I, A]
); - métodos de obtenção de dados da fonte (característica
DataSource[F[_], I, A]
).
DataSource[F[_], I, A]
( I
— , - : , ID ; A
— , F
— ) :
/**
* A `DataSource` is the recipe for fetching a certain identity `I`, which yields
* results of type `A` performing an effect of type `F[_]`.
*/
trait DataSource[F[_], I, A] {
def data: Data[I, A]
implicit def CF: Concurrent[F]
/** Fetch one identity, returning a None if it wasn't found.
*/
def fetch(id: I): F[Option[A]]
/** Fetch many identities, returning a mapping from identities to results. If an
* identity wasn't found, it won't appear in the keys.
*/
def batch(ids: NonEmptyList[I]): F[Map[I, A]] =
FetchExecution.parallel(
ids.map(id => fetch(id).tupleLeft(id))
).map(_.collect { case (id, Some(x)) => id -> x }.toMap)
def maxBatchSize: Option[Int] = None
def batchExecution: BatchExecution = InParallel
}
data: Data[I, A]
— Data[I,A]
, . CF
— «» , — Concurrent
. fetch
— ID. batch
— , ID . fetch
— ID . : , , .
Fetch:
class ListData(val list: List[String]) extends Data[Int, String] {
override def name: String = "My List of Data"
}
class ListDataSource(list: ListData)(implicit cs: ContextShift[IO])
extends DataSource[IO, Int, String]
with LazyLogging {
override def data: ListData = list
/*implicit Stack overflow, */
override def CF: Concurrent[IO] = Concurrent[IO]
override def fetch(id: Int): IO[Option[String]] =
CF.delay {
logger.info(s"Processing element from index $id")
data.list.lift(id)
}
}
: DataSource
- Data
. :
class ListSource(list: List[String])(implicit cf: ContextShift[IO]) extends Data[Int, String] with LazyLogging {
override def name: String = "My List of Data"
private def instance: ListSource = this
def source = new DataSource[IO, Int, String] {
override def data: Data[Int, String] = instance
override def CF: Concurrent[IO] = Concurrent[IO]
override def fetch(id: Int): IO[Option[String]] =
CF.delay {
logger.info(s"Processing element from index $id")
list.lift(id)
}
}
}
fetch
. . Fetch , .
DataSource
. Fetch
. — - "" . . Fetch
Fetch.run
( run , ). ID . , F
, Concurrent[F]
. :
val list = List("a", "b", "c")
val data: ListSource = new ListSource(list)
val source: DataSource[IO, Int, String] = data.source
val fetchDataPlan: Fetch[IO, String] = Fetch(1, source)
val fetchData: IO[String] = Fetch.run(fetchDataPlan)
val dataCalculated: String = fetchData.unsafeRunSync // b
, ID , .
:
object Example extends App {
implicit val ec: ExecutionContext = global
implicit val cs: ContextShift[IO] = IO.contextShift(ec) // Fetch.run ListDataSource
implicit val timer: Timer[IO] = IO.timer(ec) // Fetch.run
val list = List("a", "b", "c")
val data = new ListSource(list)
val source = data.source
Fetch.run(Fetch(0, source)).unsafeRunSync
// INFO ListDataSource - Processing element from index 0
Fetch.run(Fetch(1, source)).unsafeRunSync
// INFO ListDataSource - Processing element from index 1
Fetch.run(Fetch(2, source)).unsafeRunSync
// INFO ListDataSource - Processing element from index 2
Fetch.run(Fetch(3, source)).unsafeRunSync
// INFO ListDataSource - Processing element from index 3
// Exception in thread "main" fetch.package$MissingIdentity
}
, data.list.lift(id)
fetch
. , fetch
None
. , Option
Option : DataSource[F[_], I, A]
. Option , Fetch
apply
, optional
:
Fetch.run(Fetch.optional(3, source)).unsafeRunSync // None
, :
val fApply: Fetch[IO, String] = Fetch(3, source)
val fOptional: Fetch[IO, Option[String]] = Fetch.optional(3, source)
- Data
, Fetch
. , , optional
:
def fetchElem(id: Int) = Fetch.optional(id, source)
fetchElem
ListSource
:
Fetch.run(data.fetchElem(0)).unsafeRunSync // INFO app.ListDataSource - Processing element from index 0
Fetch.run(data.fetchElem(1)).unsafeRunSync // INFO app.ListDataSource - Processing element from index 1
Fetch.run(data.fetchElem(2)).unsafeRunSync // INFO app.ListDataSource - Processing element from index 2
println(Fetch.run(data.fetchElem(2)).unsafeRunSync) // Some(c)
println(Fetch.run(data.fetchElem(3)).unsafeRunSync) // None
Fetch « »:
def fetch(id: Int): Option[String] = {
val run = Fetch.run(data.fetchElem(id))
run.unsafeRunSync
}
fetch(1) // INFO app.ListDataSource - Processing element from index 1
fetch(1) // INFO app.ListDataSource - Processing element from index 1
fetch(1) // INFO app.ListDataSource - Processing element from index 1
Fetch DataCache[F[_]]
. — InMemoryCache[F[_]: Monad](state: Map[(Data[Any, Any], DataSourceId), DataSourceResult])
. - from
— ; empty
— :
def from[F[_]: Monad, I, A](results: ((Data[I, A], I), A)*): InMemoryCache[F]
def empty[F[_]: Monad]: InMemoryCache[F]
, , Map[(Data[Any, Any], DataSourceId), DataSourceResult]
. :
final class DataSourceId(val id: Any) extends AnyVal
final class DataSourceResult(val result: Any) extends AnyVal
, — (Data[Any, Any], DataSourceId)
. ID . — DataSourceResult
. . , Fetch . , — Any
. . InMemoryCache
:
def lookup[I, A](i: I, data: Data[I, A]): F[Option[A]] =
Applicative[F].pure(
state
.get((data.asInstanceOf[Data[Any, Any]], new DataSourceId(i)))
.map(_.result.asInstanceOf[A])
)
, Data
— . Data
A
, asInstanceOf[A]
Any
. Map updated
, .
, , Map Scala — . - .
from
:
val cacheF: DataCache[IO] = InMemoryCache.from((data, 1) -> "b", (data, 2) -> "c")
Fetch.run(data.fetchElem(1), cacheF).unsafeRunSync //
Fetch.run(data.fetchElem(1), cacheF).unsafeRunSync //
Fetch.run(data.fetchElem(1), cacheF).unsafeRunSync
Fetch.run(data.fetchElem(1), cacheF).unsafeRunSync
Fetch.run(data.fetchElem(0), cacheF).unsafeRunSync
Fetch.run(data.fetchElem(0), cacheF).unsafeRunSync
// INFO app.ListDataSource - Processing element from index 0
// INFO app.ListDataSource - Processing element from index 0
, , . , - — Map . , . Fetch.runCache
, ( , )
:
var cache: DataCache[IO] = InMemoryCache.empty
def cachedRun(id: Int): Option[String] = {
val (c, r) = Fetch.runCache(Fetch.optional(id, source), cache).unsafeRunSync
cache = c //
r
}
cachedRun(1)
cachedRun(1)
cachedRun(2)
cachedRun(2)
cachedRun(4)
cachedRun(4)
// INFO app.ListDataSource - Processing element from index 1
// INFO app.ListDataSource - Processing element from index 2
// INFO app.ListDataSource - Processing element from index 4
// INFO app.ListDataSource - Processing element from index 4
, . — .
: Caffeine
DataCache
. Fetch. DataCache
Java- Caffeine, — Scala Scaffeine:
class ScaffeineCache extends DataCache[IO] with LazyLogging {
private val cache =
Scaffeine()
.recordStats()
.expireAfterWrite(1.hour)
.maximumSize(500)
.build[(Data[Any, Any], Any), Any]()
override def lookup[I, A](i: I, data: Data[I, A]): IO[Option[A]] = IO {
cache
.getIfPresent(data.asInstanceOf[Data[Any, Any]] -> i)
.map { any =>
val correct = any.asInstanceOf[A]
logger.info(s"From cache: $i")
correct
}
}
override def insert[I, A](i: I, v: A, data: Data[I, A]): IO[DataCache[IO]] = {
cache.put(data.asInstanceOf[Data[Any, Any]] -> i, v) // Unit
IO(this)
}
}
, InMemoryCache
. Scaffeine — Any
: build[(Data[Any, Any], Any), Any]()
. asInstanceOf
:
val list = List("a", "b", "c")
val listSource = new ListSource(list)
val source = listSource.source
val randomSource = new RandomSource()
val cache = new ScaffeineCache()
/** */
Fetch.run(Fetch(1, source)).unsafeRunSync // Processing element from index 1
Fetch.run(Fetch(1, source)).unsafeRunSync // Processing element from index 1
println()
/** */
Fetch.run(Fetch(1, source), cache).unsafeRunSync // Processing element from index 1
Fetch.run(Fetch(1, source), cache).unsafeRunSync // From cache: 1
Fetch.run(Fetch("a", source), cache).unsafeRunSync // type mismatch
/** */
Fetch.run(randomSource.fetchInt(2), cache).unsafeRunSync // Getting next random by max 2
Fetch.run(randomSource.fetchInt(2), cache).unsafeRunSync // From cache: 2
:
- ID ( asInstanceOf) type mismatch Fetch ID Source, ;
- ;
- Caffeine, — . , DataCache insert.
Fetch Scala Cats. — List[Fetch[_,_]]
Fetch[_, List[_]]
, Fetch.run
. Fetch: , , , . Fetch , Fetch
Fetch.run
— , .
. :
val t1: IO[(String, String)] = for {
a <- Fetch.run(Fetch(1, source))
b <- Fetch.run(Fetch(1, source))
} yield (a, b)
for : Fetch[_, List[_]]
, Fetch
run
, . for :
val f1: Fetch[IO, (String, String)] = for {
a <- Fetch(1, source)
b <- Fetch(1, source)
} yield (a,b)
val t2: IO[(String, String)] = Fetch.run(f1)
Fetch . , Fetch.run
:
- ;
- — ;
- — .
DataSource
batch
.
Cats. , sequence List[F[_]]
F[List[_]]
. traverse : List[] `F[List[]]`. , tupled :
val f3: List[Fetch[IO, String]] = List(
Fetch(1, source),
Fetch(2, source),
Fetch(2, source)
)
val f31: Fetch[IO, List[String]] = f3.sequence
val t3: IO[List[String]] = Fetch.run(f31)
val f4: List[Int] = List(
1,
2,
2
)
val f41: Fetch[IO, List[String]] = f4.traverse(Fetch(_, source))
val t4: IO[List[String]] = Fetch.run(f41)
val f5: (Fetch[IO, String], Fetch[IO, String]) = (Fetch(1, source), Fetch(2, source))
val f51: Fetch[IO, (String, String)] = f5.tupled
val t5: IO[(String, String)] = Fetch.run(f51)
val f6: (Int, Int) = (1, 2)
val f61: Fetch[IO, (Int, String)] = f6.traverse(Fetch(_, source))
flatMap
:
val f0: Fetch[IO, String] = Fetch(1, source).flatMap(_ => Fetch(1, source))
val t0: IO[String] = Fetch.run(f0)
, , Fetch
. Cats. Fetch — , . , , .
(Batching)
Fetch . :
import fetch.fetchM // Fetch Cats
val tuple: Fetch[IO, (Option[String], Option[String])] = (data.fetchElem(0), data.fetchElem(1)).tupled
Fetch.run(tuple).unsafeRunSync() // (Some(a),Some(b))
batch
DataSource
fetch
. . , SQL- .
batch
ListSource
:
override def batch(ids: NonEmptyList[Int]): IO[Map[Int, String]] = {
logger.info(s"IDs fetching in batch: $ids")
super.batch(ids)
}
traverse
:
import fetch.fetchM
def findMany: Fetch[IO, List[Option[String]]] =
List(0, 1, 2, 3, 4, 5).traverse(data.fetchElem)
Fetch.run(findMany).unsafeRunSync
// INFO app.ListSource - IDs fetching in batch: NonEmptyList(0, 5, 1, 2, 3, 4)
, maxBatchSize
:
override def maxBatchSize: Option[Int] = 2.some // defaults to None
// INFO app.ListSource - IDs fetching in batch: NonEmptyList(0, 5)
// INFO app.ListSource - IDs fetching in batch: NonEmptyList(1, 2)
// INFO app.ListSource - IDs fetching in batch: NonEmptyList(3, 4)
, . batchExecution
:
override def batchExecution: BatchExecution = Sequentially // defaults to `InParallel`
Fetch.run
. , , Fetch .
, , - . ID, . Fetch , :
class RandomSource(implicit cf: ContextShift[IO]) extends Data[Int, Int] with LazyLogging {
override def name: String = "Random numbers generator"
private def instance: RandomSource = this
def source: DataSource[IO, Int, Int] = new DataSource[IO, Int, Int] {
override def data: Data[Int, Int] = instance
override def CF: Concurrent[IO] = Concurrent[IO]
override def fetch(max: Int): IO[Option[Int]] =
CF.delay {
logger.info(s"Getting next random by max $max")
scala.util.Random.nextInt(max).some
}
}
}
Fetch listSource
:
val listSource = new ListSource(List("a", "b", "c"))
val randomSource = new RandomSource()
def fetchMulti: Fetch[IO, (Int, String)] =
for {
rnd <- Fetch(3, randomSource.source) // Fetch[IO, Int]
char <- Fetch(rnd, listSource.source) // Fetch[IO, String]
} yield (rnd, char)
println(Fetch.run(fetchMulti).unsafeRunSync) // , (0,a)
, . : , , -, . - .
, . , for
flatMap
, . sequence
traverse
. , , sequence
traverse
. tupled
, . , .
, , . — ID , . .
:
val list = List("a", "b", "c", "d", "e", "f", "g", "h", "i")
val data = new ListSource(list, 2.some)
val tupleD: Fetch[IO, (Option[String], Option[String])] = (data.fetchElem(0), data.fetchElem(0)).tupled
Fetch.run(tupleD).unsafeRunSync()
//INFO app.sources.ListSource - Processing element from index 0
//(Some(a),Some(a))
:
def fetchMultiD: Fetch[IO, (Int, String, Int, String)] =
for {
rnd1 <- Fetch(3, randomSource.source) // Fetch[IO, Int]
char1 <- Fetch(rnd1, listSource.source) // Fetch[IO, String]
rnd2 <- Fetch(3, randomSource.source) // Fetch[IO, Int]
char2 <- Fetch(rnd2, listSource.source) // Fetch[IO, String]
} yield (rnd1, char1, rnd2, char2)
println(Fetch.run(fetchMultiD).unsafeRunSync)
//18:43:11.875 [scala-execution-context-global-14] INFO app.sources.RandomSource - Getting next random by max 3
//18:43:11.876 [scala-execution-context-global-13] INFO app.sources.ListSource - Processing element from index 1
//(1,b,1,b)
Fetch :
-
FetchException
; -
MissingIdentity
ID; -
UnhandledException
.
Fetch Option
, , Either
:
// val i: String = Fetch.run(Fetch(5, data.source)).unsafeRunSync // Exception in thread "main" fetch.package$MissingIdentity
val i: Either[Throwable, String] = Fetch.run(Fetch(5, data.source)).attempt.unsafeRunSync // Left(fetch.package$MissingIdentity)
Fetch
Fetch Fetch.runLog
, FetchLog
. fetch-debug
describe
, Throwable
Log
.
throwable
:
// libraryDependencies += "com.47deg" %% "fetch-debug" % "1.3.0"
import fetch.debug.describe
val t: Either[Throwable, (Log, String)] = Fetch.runLog(Fetch(5, data.source)).attempt.unsafeRunSync
println(t.fold(describe, identity))
// [ERROR] Identity with id `5` for data source `My List of Data` not found, fetch interrupted after 1 rounds
// Fetch execution 0.00 seconds
//
// [Round 1] 0.00 seconds
// [Fetch one] From `My List of Data` with id 5 0.00 seconds
Fetch (>>
Cats flatMap(_ => ...))
:
object DebugExample extends App with ContextEntities {
val list = List("a", "b", "c", "d", "e", "f", "g", "h")
val listData = new ListSource(list)
val listSource: DataSource[IO, Int, String] = listData.source
val randomSource = new RandomSource().source
val cacheF: DataCache[IO] = InMemoryCache.from((listData, 1) -> "b")
//
val cached = Fetch(1, listSource)
// #1,
val notCached = Fetch(2, listSource)
// #2
val random = Fetch(10, randomSource)
// #3
val batched: Fetch[IO, (String, String)] = (Fetch(3, listSource), Fetch(4, listSource)).tupled
// #4
val combined = (Fetch(5, listSource), Fetch(150, randomSource)).tupled
/** End of fetches */
val complicatedFetch: Fetch[IO, (String, Int)] = cached >> notCached >> random >> notCached >> batched >> combined
val result: IO[(Log, (String, Int))] = Fetch.runLog(complicatedFetch, cacheF)
val tuple: (Log, (String, Int)) = result.unsafeRunSync()
println(tuple._2) // (f,17)
println(describe(tuple._1))
println(tuple._1)
//Fetch execution 0.11 seconds
//
// [Round 1] 0.06 seconds
// [Fetch one] From `My List of Data` with id 2 0.06 seconds
// [Round 2] 0.00 seconds
// [Fetch one] From `Random numbers generator` with id 10 0.00 seconds
// [Round 3] 0.01 seconds
// [Batch] From `My List of Data` with ids List(3, 4) 0.01 seconds
// [Round 4] 0.00 seconds
// [Fetch one] From `Random numbers generator` with id 150 0.00 seconds
// [Fetch one] From `My List of Data` with id 5 0.00 seconds
// raw:
// FetchLog(Queue(Round(List(Request(FetchOne(2,app.sources.ListSource@ea6147e),10767139,10767203))), Round(List(Request(FetchOne(10,app.sources.RandomSource@58b31054),10767211,10767213))), Round(List(Request(Batch(NonEmptyList(3, 4),app.sources.ListSource@ea6147e),10767234,10767242))), Round(List(Request(FetchOne(150,app.sources.RandomSource@58b31054),10767252,10767252), Request(FetchOne(5,app.sources.ListSource@ea6147e),10767252,10767252)))))
}
:
- cached , ;
- notCached . C ;
- batch ;
- .
. >>,
. 3 4 tupled
, . — , . — , .
:
, , . , :
- ID - ;
- ;
- ID;
- .
( ):
/*Model*/
type DocumentId = String
type PersonId = String
case class FtsResponse(ids: List[DocumentId])
case class SimilarityItem(id: DocumentId, similarity: Double)
case class DocumentInfo(id: DocumentId, info: String, authors: List[PersonId])
case class Person(id: PersonId, fullTitle: String)
/*Response*/
case class DocumentSearchResponse(
items: List[DocumentSearchItem]
)
case class DocumentItem(id: DocumentId, info: Option[String], authors: List[Person])
case class DocumentSimilarItem(
item: DocumentItem,
similarity: Double
)
case class DocumentSearchItem(
item: DocumentItem,
similar: List[DocumentSimilarItem]
)
class DocumentSearchExample(
fts: Fts[IO],
documentInfoRepo: DocumentInfoRepo[IO],
vectorSearch: VectorSearch[IO],
personRepo: PersonRepo[IO]
)(
implicit cs: ContextShift[IO]
) {
val infoSource = new DocumentInfoSource(documentInfoRepo, 16.some)
val personSource = new PersonSource(personRepo, 16.some)
val similarSource = new SimilarDocumentSource(vectorSearch, 16.some)
def documentItemFetch(id: DocumentId): Fetch[IO, DocumentItem] =
for {
infoOpt <- infoSource.fetchElem(id)
p <- infoOpt.traverse(i => i.authors.traverse(personSource.fetchElem).map(_.flatten))
} yield DocumentItem(id, infoOpt.map(_.info), p.getOrElse(List.empty[Person]))
def fetchSimilarItems(id: DocumentId): Fetch[IO, List[DocumentSimilarItem]] =
similarSource
.fetchElem(id)
.map(_.getOrElse(List.empty[SimilarityItem]))
.flatMap {
_.traverse { si =>
documentItemFetch(si.id).map { di =>
DocumentSimilarItem(di, si.similarity)
}
}
}
def searchDocumentFetch(query: String): Fetch[IO, DocumentSearchResponse] =
for {
docs <- Fetch.liftF(fts.search(query))
items <- docs.ids.traverse { id =>
(documentItemFetch(id), fetchSimilarItems(id)).tupled.map(r => DocumentSearchItem(r._1, r._2))
}
} yield DocumentSearchResponse(items)
}
DocumentSearchExample
. , . , Doobie. Fetch — DocumentInfoSource
, PersonSource
SimilarDocumentSource
, .
searchDocumentFetch
query
. , , Fetch. search
:
def search(query: String): F[FtsResponse]
liftF
Fetch[F, FtsResponse]
, for
Fetch.
ID ID . Fetch tupled
, , . , DocumentSearchItem
.
fetchSimilarItems ID similarSource
, — documentItemFetch
. . DocumentInfo
ID, , .
Fetch[IO, Fetch[...]]
map flatMap:
similarSource
.fetchElem(id)
.map(_.getOrElse(List.empty[SimilarityItem])) // Fetch
.flatMap {
_.traverse { si =>
documentItemFetch(si.id).map { di => // Fetch
DocumentSimilarItem(di, si.similarity)
}
}
}
:
private val docInfo = Map(
"1" -> DocumentInfo("1", "Document 1", List(1)),
"2" -> DocumentInfo("2", "Document 2", List(1,2)),
"3" -> DocumentInfo("3", "Document 3", List(3,1)),
"4" -> DocumentInfo("4", "Document 4", List(2,1)),
"5" -> DocumentInfo("5", "Document 5", List(2)),
"6" -> DocumentInfo("6", "Document 6", List(1,3))
)
private val similars = Map(
"1" -> List(SimilarityItem("2", 0.7), SimilarityItem("3", 0.6)),
"2" -> List(SimilarityItem("1", 0.7)),
"3" -> List(SimilarityItem("1", 0.6)),
"4" -> List(),
"5" -> List(SimilarityItem("6", 0.5)),
"6" -> List(SimilarityItem("5", 0.5))
)
private val persons = Map(
1 -> Person(1, "Rick Deckard"),
2 -> Person(2, "Roy Batty"),
3 -> Person(3, "Joe")
)
, . , :
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 2. It is: Some(List(1))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 4. It is: None
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 3. It is: Some(List(1))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 1. It is: Some(List(2, 3))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 6. It is: Some(List(5))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 5. It is: Some(List(6))
INFO app.searchfetchproto.source.DocumentInfoSource - Document IDs fetching in batch: NonEmptyList(4, 5, 2, 3, 6, 1)
INFO app.searchfetchproto.source.PersonSource - Person IDs fetching in batch: NonEmptyList(1, 2, 3)
, , batch
:
[Round 1] 0.12 seconds
[Batch] From `Similar Document Source` with ids List(4, 5, 2, 3, 6, 1) 0.06 seconds
[Batch] From `Document Info Source` with ids List(4, 5, 2, 3, 6, 1) 0.12 seconds
[Round 2] 0.00 seconds
[Batch] From `Persons source` with ids List(1, 2, 3) 0.00 seconds
searchDocumentFetch
:
(documentItemFetch(id), fetchSimilarItems(id)).tupled
tupled
. , fetchSimilarItems
documentItemFetch
, , :
[Batch] From `Similar Document Source` with ids List(4, 5, 2, 3, 6, 1) 0.06 seconds
[Batch] From `Document Info Source` with ids List(4, 5, 2, 3, 6, 1) 0.12 seconds
, , . . (, Thread.sleep(100)
), :
INFO app.searchfetchproto.source.DocumentInfoSource - Document IDs fetching in batch: NonEmptyList(4, 5, 2, 3, 6, 1)
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 4. It is: None
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 5. It is: Some(List(6))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 3. It is: Some(List(1))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 2. It is: Some(List(1))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 6. It is: Some(List(5))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 1. It is: Some(List(2, 3))
INFO app.searchfetchproto.source.DocumentInfoSource - Document IDs fetching in batch: NonEmptyList(5, 2, 3, 6, 1)
[Round 1] 0.13 seconds
[Batch] From `Similar Document Source` with ids List(4, 5, 2, 3, 6, 1) 0.13 seconds
[Batch] From `Document Info Source` with ids List(4, 5, 2, 3, 6, 1) 0.08 seconds
[Round 2] 0.00 seconds
[Batch] From `Document Info Source` with ids List(5, 2, 3, 6, 1) 0.00 seconds
[Batch] From `Persons source` with ids List(1, 2, 3) 0.00 seconds
, fetchSimilarItems
. , .
Fetch . , , , . Cats, Fetch Scala Doobie fs2.
- ZQuery — , , ZIO Cats;
- Clump — , Fetch, 2015;
- Haxl — Haskell.
ZQuery Fetch — “There is no Fork: an Abstraction for Efficient, Concurrent, and Concise Data Access” (https://simonmar.github.io/bib/papers/haxl-icfp14.pdf), ( ) .