Neste estudo, eu queria ver quais melhorias de desempenho podem ser obtidas usando uma fonte de dados ClickHouse em vez de PostgreSQL. Eu sei quais são os benefícios de desempenho que recebo ao usar o ClickHouse. Esses benefícios persistirão se eu acessar o ClickHouse do PostgreSQL usando um wrapper de dados externo (FDW)?
Os ambientes de banco de dados estudados são PostgreSQL v11, clickhousedb_fdw e banco de dados ClickHouse. Por fim, a partir do PostgreSQL v11, executaremos várias consultas SQL roteadas por meio de nosso clickhousedb_fdw para o banco de dados ClickHouse. Em seguida, veremos como o desempenho do FDW se compara às mesmas consultas executadas no PostgreSQL nativo e ClickHouse nativo.
Banco de dados Clickhouse
ClickHouse é um sistema de gerenciamento de banco de dados baseado em colunas de código aberto que pode atingir desempenho 100-1000 vezes mais rápido do que as abordagens tradicionais de banco de dados, capaz de processar mais de um bilhão de linhas em menos de um segundo.
Clickhousedb_fdw
clickhousedb_fdw - ClickHouse External Database Wrapper, ou FDW, é um projeto de código aberto da Percona. Aqui está um link para o repositório GitHub do projeto .
Em março, escrevi um blog que conta mais sobre nosso FDW .
Como você verá, isso fornece FDW para ClickHouse, que permite SELECIONAR e INSERTAR no banco de dados ClickHouse do servidor PostgreSQL v11.
FDW , aggregate join. .
Benchmark environment
- Supermicro server:
- Intel® Xeon® CPU E5-2683 v3 @ 2.00GHz
- 2 sockets / 28 cores / 56 threads
- Memory: 256GB of RAM
- Storage: Samsung SM863 1.9TB Enterprise SSD
- Filesystem: ext4/xfs
- OS: Linux smblade01 4.15.0-42-generic #45~16.04.1-Ubuntu
- PostgreSQL: version 11
Benchmark tests
, - , , , « , » 1987 2018 . , .
85 , 109 .
Benchmark Queries
, ClickHouse, clickhousedb_fdw PostgreSQL.
Q# | Query Contains Aggregates and Group By |
---|---|
Q1 | SELECT DayOfWeek, count(*) AS c FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC; |
Q2 | SELECT DayOfWeek, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC; |
Q3 | SELECT Origin, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Origin ORDER BY c DESC LIMIT 10; |
Q4 | SELECT Carrier, count() FROM ontime WHERE DepDelay>10 AND Year = 2007 GROUP BY Carrier ORDER BY count() DESC; |
Q5 | SELECT a.Carrier, c, c2, c1000/c2 as c3 FROM ( SELECT Carrier, count() AS c FROM ontime WHERE DepDelay>10 AND Year=2007 GROUP BY Carrier ) a INNER JOIN ( SELECT Carrier,count(*) AS c2 FROM ontime WHERE Year=2007 GROUP BY Carrier)b on a.Carrier=b.Carrier ORDER BY c3 DESC; |
Q6 | SELECT a.Carrier, c, c2, c1000/c2 as c3 FROM ( SELECT Carrier, count() AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Carrier) a INNER JOIN ( SELECT Carrier, count(*) AS c2 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier ) b on a.Carrier=b.Carrier ORDER BY c3 DESC; |
Q7 | SELECT Carrier, avg(DepDelay) * 1000 AS c3 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier; |
Q8 | SELECT Year, avg(DepDelay) FROM ontime GROUP BY Year; |
Q9 | select Year, count(*) as c1 from ontime group by Year; |
Q10 | SELECT avg(cnt) FROM (SELECT Year,Month,count(*) AS cnt FROM ontime WHERE DepDel15=1 GROUP BY Year,Month) a; |
Q11 | select avg(c1) from (select Year,Month,count(*) as c1 from ontime group by Year,Month) a; |
Q12 | SELECT OriginCityName, DestCityName, count(*) AS c FROM ontime GROUP BY OriginCityName, DestCityName ORDER BY c DESC LIMIT 10; |
Q13 | SELECT OriginCityName, count(*) AS c FROM ontime GROUP BY OriginCityName ORDER BY c DESC LIMIT 10; |
Query Contains Joins | |
Q14 | SELECT a.Year, c1/c2 FROM ( select Year, count()1000 as c1 from ontime WHERE DepDelay>10 GROUP BY Year) a INNER JOIN (select Year, count(*) as c2 from ontime GROUP BY Year ) b on a.Year=b.Year ORDER BY a.Year; |
Q15 | SELECT a.”Year”, c1/c2 FROM ( select “Year”, count()1000 as c1 FROM fontime WHERE “DepDelay”>10 GROUP BY “Year”) a INNER JOIN (select “Year”, count(*) as c2 FROM fontime GROUP BY “Year” ) b on a.”Year”=b.”Year”; |
Table-1: Queries used in benchmark
Query executions
: PostgreSQL , ClickHouse clickhousedb_fdw. .
Q# | PostgreSQL | PostgreSQL (Indexed) | ClickHouse | clickhousedb_fdw |
---|---|---|---|---|
Q1 | 27920 | 19634 | 23 | 57 |
Q2 | 35124 | 17301 | 50 | 80 |
Q3 | 34046 | 15618 | 67 | 115 |
Q4 | 31632 | 7667 | 25 | 37 |
Q5 | 47220 | 8976 | 27 | 60 |
Q6 | 58233 | 24368 | 55 | 153 |
Q7 | 30566 | 13256 | 52 | 91 |
Q8 | 38309 | 60511 | 112 | 179 |
Q9 | 20674 | 37979 | 31 | 81 |
Q10 | 34990 | 20102 | 56 | 148 |
Q11 | 30489 | 51658 | 37 | 155 |
Q12 | 39357 | 33742 | 186 | 1333 |
Q13 | 29912 | 30709 | 101 | 384 |
Q14 | 54126 | 39913 | 124 | 1364212 |
Q15 | 97258 | 30211 | 245 | 259 |
Table-1: Time taken to execute the queries used in benchmark
, X , Y . ClickHouse , postgres clickhousedb_fdw, . , PostgreSQL ClickHouse, ClickHouse clickhousedb_fdw.
ClickhouseDB clickhousedb_fdw. FDW , Q12. ORDER BY. - ORDER BY GROUP/BY ORDER BY ClickHouse.
2 Q12 Q13. , ORDER BY. , Q-14 Q-15 ORDER BY . ORDER BY 259 , ORDER BY — 1364212. , .
Q15: Without ORDER BY Clause
bm=# EXPLAIN VERBOSE SELECT a."Year", c1/c2
FROM (SELECT "Year", count(*)*1000 AS c1 FROM fontime WHERE "DepDelay" > 10 GROUP BY "Year") a
INNER JOIN(SELECT "Year", count(*) AS c2 FROM fontime GROUP BY "Year") b ON a."Year"=b."Year";
Q15: Query Without ORDER BY Clause
QUERY PLAN
Hash Join (cost=2250.00..128516.06 rows=50000000 width=12)
Output: fontime."Year", (((count(*) * 1000)) / b.c2)
Inner Unique: true Hash Cond: (fontime."Year" = b."Year")
-> Foreign Scan (cost=1.00..-1.00 rows=100000 width=12)
Output: fontime."Year", ((count(*) * 1000))
Relations: Aggregate on (fontime)
Remote SQL: SELECT "Year", (count(*) * 1000) FROM "default".ontime WHERE (("DepDelay" > 10)) GROUP BY "Year"
-> Hash (cost=999.00..999.00 rows=100000 width=12)
Output: b.c2, b."Year"
-> Subquery Scan on b (cost=1.00..999.00 rows=100000 width=12)
Output: b.c2, b."Year"
-> Foreign Scan (cost=1.00..-1.00 rows=100000 width=12)
Output: fontime_1."Year", (count(*))
Relations: Aggregate on (fontime)
Remote SQL: SELECT "Year", count(*) FROM "default".ontime GROUP BY "Year"(16 rows)
Q14: Query With ORDER BY Clause
bm=# EXPLAIN VERBOSE SELECT a."Year", c1/c2 FROM(SELECT "Year", count(*)*1000 AS c1 FROM fontime WHERE "DepDelay" > 10 GROUP BY "Year") a
INNER JOIN(SELECT "Year", count(*) as c2 FROM fontime GROUP BY "Year") b ON a."Year"= b."Year"
ORDER BY a."Year";
Q14: Query Plan with ORDER BY Clause
QUERY PLAN
Merge Join (cost=2.00..628498.02 rows=50000000 width=12)
Output: fontime."Year", (((count(*) * 1000)) / (count(*)))
Inner Unique: true Merge Cond: (fontime."Year" = fontime_1."Year")
-> GroupAggregate (cost=1.00..499.01 rows=1 width=12)
Output: fontime."Year", (count(*) * 1000)
Group Key: fontime."Year"
-> Foreign Scan on public.fontime (cost=1.00..-1.00 rows=100000 width=4)
Remote SQL: SELECT "Year" FROM "default".ontime WHERE (("DepDelay" > 10))
ORDER BY "Year" ASC
-> GroupAggregate (cost=1.00..499.01 rows=1 width=12)
Output: fontime_1."Year", count(*) Group Key: fontime_1."Year"
-> Foreign Scan on public.fontime fontime_1 (cost=1.00..-1.00 rows=100000 width=4)
Remote SQL: SELECT "Year" FROM "default".ontime ORDER BY "Year" ASC(16 rows)
, ClickHouse , clickhousedb_fdw ClickHouse PostgreSQL. clickhousedb_fdw , , ClickHouse. , fdw PostgreSQL .
Clickhouse https://t.me/clickhouse_ru
PostgreSQL https://t.me/pgsql