tl; dr: Uma análise simplificada do artigo, na qual o autor oferece dois teoremas interessantes, com base nos quais encontrou uma maneira de extrair vetores ocultos de significados da matriz de incorporação. Um guia é fornecido sobre como reproduzir os resultados. O laptop está disponível no github .
Introdução
Neste artigo, quero compartilhar uma coisa incrível que o pesquisador Sanjev Arora encontrou em seu artigo Estrutura Algébrica Linear dos Sentidos da Palavra, com Aplicações à Polissemia . É um de uma série de artigos em que ele tenta fornecer uma base teórica para as propriedades de incorporação de palavras. No mesmo trabalho, Arora supõe que casamentos simples, como word2vec ou Glove, na verdade incluem vários significados para uma palavra e oferecem uma maneira de restaurá-los. No decorrer do artigo, tentarei manter os exemplos originais.
Mais formalmente, por que denotam um certo vetor incorporação da palavralaço, o qual pode ter o significado de um nó ou laço, ou pode ser um laço. Arora sugere que esse vetor possa ser escrito como a seguinte combinação linear
Onde é um dos significados possíveis da palavralaço, ecoeficiente α . Vamos tentar descobrir como isso acontece.
Teoria
Escrito por um não matemático, por favor relate todos os erros, especialmente no tapete. terminologia.
Uma pequena nota sobre a teoria de Arora
Como o trabalho inicial de Arora é muito mais complicado do que isso, ainda não preparei uma revisão completa. No entanto, veremos brevemente o que é.
Portanto, Arora oferece a ideia de que qualquer texto é gerado por um modelo generativo. No processo de seu trabalho a cada passo palavra gerado . O modelo consiste em um vetor de contexto e vetores de casamentos. (dimensions), , . , , - (, ), — (, ), , , — .
, .. - , . . , . : " " , " ". , "": , .
, . , , , .
: , . ,
— , — , — partition function. , , .
. , , : , , , . Y, X .
. - , - .
, , . , , "". :
, ", , , ". , , , ", , , " , " " .
, . , , . , ( , ). , , . .
1
, . ,
, . . . . , , . , , ( ). , , out-of-vocabulary , , .
, . , SIF . , , , . , SIF k, , , TF-IDF.
, , 1, . , - , , .
. , - , , . :
- . .
- , , SIF 20 , . , n — .
- SIF .
- SIF
, .. . 1/3 , A 2\3 . . .
#paragraphs | 250k | 500k | 750k | 1 million |
---|---|---|---|---|
cos similarity | 0.94 | 0.95 | 0.96 | 0.96 |
2
, . - , . , , .. , , tie_1 tie_2, tie_1 — , tie2 — .
, , $<!-- math>$inline$ \upsilon{w{s1} } \upsilon{w_{s2} } $inline$</math -->$. , , , ,
and . , , .
, , , , ? , . . , . , , . , , , , , . , , , (inner product) . , , - (, , , ), , ! .
. ? . , , ,
— .
, k (sparsity parameter), m — .. , . k-SVD. , . , , ( , ). , , - , , , . .
, , .
import numpy as np
from gensim.test.utils import datapath, get_tmpfile
from gensim.models import KeyedVectors
from gensim.scripts.glove2word2vec import glove2word2vec
from scipy.spatial.distance import cosine
import warnings
warnings.filterwarnings('ignore')
tmp_file = get_tmpfile("test_word2vec.txt")
_ = glove2word2vec("/home/astromis/Embeddings/glove.6B.300d.txt", tmp_file)
model = KeyedVectors.load_word2vec_format(tmp_file)
embeddings = model.wv
index2word = embeddings.index2word
embedds = embeddings.vectors
print(embedds.shape)
(400000, 300)
400000 .
2. k-svd
. ksvd.
!pip install ksvd
from ksvd import ApproximateKSVD
Requirement already satisfied: ksvd in /home/astromis/anaconda3/lib/python3.6/site-packages (0.0.3)
Requirement already satisfied: numpy in /home/astromis/anaconda3/lib/python3.6/site-packages (from ksvd) (1.14.5)
Requirement already satisfied: scikit-learn in /home/astromis/anaconda3/lib/python3.6/site-packages (from ksvd) (0.19.1)
, 2000 5.
: 10000 . , , , , .
%time
aksvd = ApproximateKSVD(n_components=2000,transform_n_nonzero_coefs=5, )
embedding_trans = embeddings.vectors
dictionary = aksvd.fit(embedding_trans).components_
gamma = aksvd.transform(embedding_trans)
CPU times: user 4 µs, sys: 0 ns, total: 4 µs
Wall time: 9.54 µs
#gamma = np.load('./data/mats/.npz')
# dictionary_glove6b_300d.np.npz - whole matrix file
dictionary = np.load('./data/mats/dictionary_glove6b_300d_10000.np.npz')
dictionary = dictionary[dictionary.keys()[0]]
#print(gamma.shape)
print(dictionary.shape)
(2000, 300)
#np.savez_compressed('gamma_glove6b_300d.npz', gamma)
#np.savez_compressed('dictionary_glove6b_300d.npz', dictionary)
3.
, . .
embeddings.similar_by_vector(dictionary[1354,:])
[('slave', 0.8417330980300903),
('slaves', 0.7482961416244507),
('plantation', 0.6208109259605408),
('slavery', 0.5356900095939636),
('enslaved', 0.4814416170120239),
('indentured', 0.46423888206481934),
('fugitive', 0.4226764440536499),
('laborers', 0.41914862394332886),
('servitude', 0.41276970505714417),
('plantations', 0.4113745093345642)]
embeddings.similar_by_vector(dictionary[1350,:])
[('transplant', 0.7767853736877441),
('marrow', 0.699995219707489),
('transplants', 0.6998592615127563),
('kidney', 0.6526087522506714),
('transplantation', 0.6381147503852844),
('tissue', 0.6344675421714783),
('liver', 0.6085026860237122),
('blood', 0.5676015615463257),
('heart', 0.5653558969497681),
('cells', 0.5476219058036804)]
embeddings.similar_by_vector(dictionary[1546,:])
[('commons', 0.7160810828208923),
('house', 0.6588335037231445),
('parliament', 0.5054076910018921),
('capitol', 0.5014163851737976),
('senate', 0.4895153343677521),
('hill', 0.48859673738479614),
('inn', 0.4566132128238678),
('congressional', 0.4341348707675934),
('congress', 0.42997264862060547),
('parliamentary', 0.4264637529850006)]
embeddings.similar_by_vector(dictionary[1850,:])
[('okano', 0.2669774889945984),
('erythrocytes', 0.25755012035369873),
('windir', 0.25621023774147034),
('reapportionment', 0.2507009208202362),
('qurayza', 0.2459488958120346),
('taschen', 0.24417680501937866),
('pfaffenbach', 0.2437630295753479),
('boldt', 0.2394050508737564),
('frucht', 0.23922981321811676),
('rulebook', 0.23821482062339783)]
! , . . , , . "tie" "spring" .
itie = index2word.index('tie')
ispring = index2word.index('spring')
tie_emb = embedds[itie]
string_emb = embedds[ispring]
simlist = []
for i, vector in enumerate(dictionary):
simlist.append( (cosine(vector, tie_emb), i) )
simlist = sorted(simlist, key=lambda x: x[0])
six_atoms_ind = [ins[1] for ins in simlist[:15]]
for atoms_idx in six_atoms_ind:
nearest_words = embeddings.similar_by_vector(dictionary[atoms_idx,:])
nearest_words = [word[0] for word in nearest_words]
print("Atom #{}: {}".format(atoms_idx, ' '.join(nearest_words)))
Atom #162: win victory winning victories wins won 2-1 scored 3-1 scoring
Atom #58: game play match matches games played playing tournament players stadium
Atom #237: 0-0 1-1 2-2 3-3 draw 0-1 4-4 goalless 1-0 1-2
Atom #622: wrapped wrap wrapping holding placed attached tied hold plastic held
Atom #1899: struggles tying tied inextricably fortunes struggling tie intertwined redefine define
Atom #1941: semifinals quarterfinals semifinal quarterfinal finals semis semi-finals berth champions quarter-finals
Atom #1074: qualifier quarterfinals semifinal semifinals semi finals quarterfinal champion semis champions
Atom #1914: wearing wore jacket pants dress wear worn trousers shirt jeans
Atom #281: black wearing man pair white who girl young woman big
Atom #1683: overtime extra seconds ot apiece 20-17 turnovers 3-2 halftime overtimes
Atom #369: snap picked snapped pick grabbed picks knocked picking bounced pulled
Atom #98: first team start final second next time before test after
Atom #1455: after later before when then came last took again but
Atom #1203: competitions qualifying tournaments finals qualification matches qualifiers champions competition competed
Atom #1602: hat hats mask trick wearing wears sunglasses trademark wig wore
simlist = []
for i, vector in enumerate(dictionary):
simlist.append( (cosine(vector, string_emb), i) )
simlist = sorted(simlist, key=lambda x: x[0])
six_atoms_ind = [ins[1] for ins in simlist[:15]]
for atoms_idx in six_atoms_ind:
nearest_words = embeddings.similar_by_vector(dictionary[atoms_idx,:])
nearest_words = [word[0] for word in nearest_words]
print("Atom #{}: {}".format(atoms_idx, ' '.join(nearest_words)))
Atom #528: autumn spring summer winter season rainy seasons fall seasonal during
Atom #1070: start begin beginning starting starts begins next coming day started
Atom #931: holiday christmas holidays easter thanksgiving eve celebrate celebrations weekend festivities
Atom #1455: after later before when then came last took again but
Atom #754: but so not because even only that it this they
Atom #688: yankees yankee mets sox baseball braves steinbrenner dodgers orioles torre
Atom #1335: last ago year months years since month weeks week has
Atom #252: upcoming scheduled preparations postponed slated forthcoming planned delayed preparation preparing
Atom #619: cold cool warm temperatures dry cooling wet temperature heat moisture
Atom #1775: garden gardens flower flowers vegetable ornamental gardeners gardening nursery floral
Atom #21: dec. nov. oct. feb. jan. aug. 27 28 29 june
Atom #84: celebrations celebration marking festivities occasion ceremonies celebrate celebrated celebrating ceremony
Atom #98: first team start final second next time before test after
Atom #606: vacation lunch hour spend dinner hours time ramadan brief workday
Atom #384: golden moon hemisphere mars twilight millennium dark dome venus magic
! , , , .
, , . , , .
. fastText, RusVectores. 300.
fasttext_model = KeyedVectors.load('/home/astromis/Embeddings/fasttext/model.model')
embeddings = fasttext_model.wv
index2word = embeddings.index2word
embedds = embeddings.vectors
embedds.shape
(164996, 300)
%time
aksvd = ApproximateKSVD(n_components=2000,transform_n_nonzero_coefs=5, )
embedding_trans = embeddings.vectors[:10000]
dictionary = aksvd.fit(embedding_trans).components_
gamma = aksvd.transform(embedding_trans)
CPU times: user 1 µs, sys: 2 µs, total: 3 µs
Wall time: 6.2 µs
dictionary = np.load('./data/mats/dictionary_rus_fasttext_300d.npz')
dictionary = dictionary[dictionary.keys()[0]]
embeddings.similar_by_vector(dictionary[1024,:], 20)
[('', 0.6854609251022339),
('', 0.6593252420425415),
('', 0.6360634565353394),
('', 0.5998549461364746),
('', 0.5971367955207825),
('', 0.5862340927124023),
('', 0.5788886547088623),
('', 0.5788123607635498),
('', 0.5623885989189148),
('', 0.5610565543174744),
('', 0.5551878809928894),
('', 0.551397442817688),
('', 0.5356274247169495),
('', 0.531707227230072),
('', 0.5174376368522644),
('', 0.5131562948226929),
('', 0.5120065212249756),
('', 0.5077806115150452),
('', 0.5074601173400879),
('', 0.5068254470825195)]
embeddings.similar_by_vector(dictionary[1582,:], 20)
[('', 0.45191124081611633),
('', 0.4515378475189209),
('', 0.4478364586830139),
('', 0.4280813932418823),
('', 0.41220104694366455),
('', 0.40772825479507446),
('', 0.4047147035598755),
('', 0.4030646085739136),
('', 0.39368513226509094),
('', 0.39012178778648376),
('', 0.3866344690322876),
('', 0.37968817353248596),
('', 0.3728911876678467),
('', 0.3663109242916107),
('', 0.3640827238559723),
('', 0.3474290072917938),
('', 0.3473641574382782),
('', 0.3468908369541168),
('', 0.34586742520332336),
('', 0.34555742144584656)]
embeddings.similar_by_vector(dictionary[500,:], 20)
[('', 0.6874514222145081),
('-', 0.5172050595283508),
('', 0.46720415353775024),
('', 0.44713956117630005),
('', 0.4144558310508728),
('', 0.40545403957366943),
('', 0.4030636250972748),
('-', 0.4016447067260742),
('', 0.38331469893455505),
('', 0.37292781472206116),
('', 0.3625457286834717),
('', 0.35121074318885803),
('', 0.3504621088504791),
('', 0.34097471833229065),
('', 0.33320850133895874),
('', 0.3277249336242676),
('', 0.3266661763191223),
('', 0.31865227222442627),
('::', 0.30150306224823),
('', 0.2975207567214966)]
itie = index2word.index('')
ispring = index2word.index('')
tie_emb = embedds[itie]
string_emb = embedds[ispring]
simlist = []
for i, vector in enumerate(dictionary):
simlist.append( (cosine(vector, string_emb), i) )
simlist = sorted(simlist, key=lambda x: x[0])
six_atoms_ind = [ins[1] for ins in simlist[:10]]
for atoms_idx in six_atoms_ind:
nearest_words = embeddings.similar_by_vector(dictionary[atoms_idx,:])
nearest_words = [word[0] for word in nearest_words]
print("Atom #{}: {}".format(atoms_idx, ' '.join(nearest_words)))
Atom #185:
Atom #1217: -
Atom #1213:
Atom #1978:
Atom #1796:
Atom #839:
Atom #989:
Atom #414:
Atom #1140: -
Atom #878:
simlist = []
for i, vector in enumerate(dictionary):
simlist.append( (cosine(vector, tie_emb), i) )
simlist = sorted(simlist, key=lambda x: x[0])
six_atoms_ind = [ins[1] for ins in simlist[:10]]
for atoms_idx in six_atoms_ind:
nearest_words = embeddings.similar_by_vector(dictionary[atoms_idx,:])
nearest_words = [word[0] for word in nearest_words]
print("Atom #{}: {}".format(atoms_idx, ' '.join(nearest_words)))
Atom #883: -
Atom #40:
Atom #215:
Atom #688:
Atom #386:
Atom #676:
Atom #414:
Atom #127:
Atom #592:
Atom #703: - -
#np.savez_compressed('./data/mats/gamma_rus_fasttext_300d.npz', gamma)
#np.savez_compressed('./data/mats/dictionary_rus_fasttext_300d.npz', dictionary)
.
, (Word sense indection), , 1. — , . , , . , , , . , .
UPD: knagaev .